TY - JOUR
T1 - XBSeq2
T2 - A fast and accurate quantification of differential expression and differential polyadenylation
AU - Liu, Yuanhang
AU - Wu, Ping
AU - Zhou, Jingqi
AU - Johnson-Pais, Teresa L.
AU - Lai, Zhao
AU - Chowdhury, Wasim H.
AU - Rodriguez, Ronald
AU - Chen, Yidong
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/10/3
Y1 - 2017/10/3
N2 - Background: RNA sequencing (RNA-seq) is a high throughput technology that profiles gene expression in a genome-wide manner. RNA-seq has been mainly used for testing differential expression (DE) of transcripts between two conditions and has recently been used for testing differential alternative polyadenylation (APA). In the past, many algorithms have been developed for detecting differentially expressed genes (DEGs) from RNA-seq experiments, including the one we developed, XBSeq, which paid special attention to the context-specific background noise that is ignored in conventional gene expression quantification and DE analysis of RNA-seq data. Results: We present several major updates in XBSeq2, including alternative statistical testing and parameter estimation method for detecting DEGs, capacity to directly process alignment files and methods for testing differential APA usage. We evaluated the performance of XBSeq2 against several other methods by using simulated datasets in terms of area under the receiver operating characteristic (ROC) curve (AUC), number of false discoveries and statistical power. We also benchmarked different methods concerning execution time and computational memory consumed. Finally, we demonstrated the functionality of XBSeq2 by using a set of in-house generated clear cell renal carcinoma (ccRCC) samples. Conclusions: We present several major updates to XBSeq. By using simulated datasets, we demonstrated that, overall, XBSeq2 performs equally well as XBSeq in terms of several statistical metrics and both perform better than DESeq2 and edgeR. In addition, XBSeq2 is faster in speed and consumes much less computational memory compared to XBSeq, allowing users to evaluate differential expression and APA events in parallel. XBSeq2 is available from Bioconductor: http://bioconductor.org/packages/XBSeq/
AB - Background: RNA sequencing (RNA-seq) is a high throughput technology that profiles gene expression in a genome-wide manner. RNA-seq has been mainly used for testing differential expression (DE) of transcripts between two conditions and has recently been used for testing differential alternative polyadenylation (APA). In the past, many algorithms have been developed for detecting differentially expressed genes (DEGs) from RNA-seq experiments, including the one we developed, XBSeq, which paid special attention to the context-specific background noise that is ignored in conventional gene expression quantification and DE analysis of RNA-seq data. Results: We present several major updates in XBSeq2, including alternative statistical testing and parameter estimation method for detecting DEGs, capacity to directly process alignment files and methods for testing differential APA usage. We evaluated the performance of XBSeq2 against several other methods by using simulated datasets in terms of area under the receiver operating characteristic (ROC) curve (AUC), number of false discoveries and statistical power. We also benchmarked different methods concerning execution time and computational memory consumed. Finally, we demonstrated the functionality of XBSeq2 by using a set of in-house generated clear cell renal carcinoma (ccRCC) samples. Conclusions: We present several major updates to XBSeq. By using simulated datasets, we demonstrated that, overall, XBSeq2 performs equally well as XBSeq in terms of several statistical metrics and both perform better than DESeq2 and edgeR. In addition, XBSeq2 is faster in speed and consumes much less computational memory compared to XBSeq, allowing users to evaluate differential expression and APA events in parallel. XBSeq2 is available from Bioconductor: http://bioconductor.org/packages/XBSeq/
KW - Alternative polyadenylation
KW - Differential expression analysis
KW - RNA-seq
KW - XBSeq
KW - XBSeq2
UR - http://www.scopus.com/inward/record.url?scp=85030315045&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030315045&partnerID=8YFLogxK
U2 - 10.1186/s12859-017-1803-9
DO - 10.1186/s12859-017-1803-9
M3 - Article
C2 - 28984183
AN - SCOPUS:85030315045
SN - 1471-2105
VL - 18
JO - BMC bioinformatics
JF - BMC bioinformatics
M1 - 384
ER -