Viral assembly of oriented quantum dot nanowires

Chuanbin Mao, Christine E. Flynn, Andrew Hayhurst, Rozamond Sweeney, Jifa Qi, George Georgiou, Brent Iverson, Angela M. Belcher

Resultado de la investigación: Articlerevisión exhaustiva

465 Citas (Scopus)


The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a plll phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pvIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

Idioma originalEnglish (US)
Páginas (desde-hasta)6946-6951
Número de páginas6
PublicaciónProceedings of the National Academy of Sciences of the United States of America
EstadoPublished - jun 10 2003
Publicado de forma externa

ASJC Scopus subject areas

  • General


Profundice en los temas de investigación de 'Viral assembly of oriented quantum dot nanowires'. En conjunto forman una huella única.

Citar esto