Variational Autoencoder with Truncated Mixture of Gaussians for Functional Connectivity Analysis

Qingyu Zhao, Nicolas Honnorat, Ehsan Adeli, Adolf Pfefferbaum, Edith V. Sullivan, Kilian M. Pohl

Producción científica: Conference contribution

25 Citas (Scopus)

Resumen

Resting-state functional connectivity states are often identified as clusters of dynamic connectivity patterns. However, existing clustering approaches do not distinguish major states from rarely occurring minor states and hence are sensitive to noise. To address this issue, we propose to model major states using a non-linear generative process guided by a Gaussian-mixture distribution in a low-dimensional latent space, while separately modeling the connectivity patterns of minor states by a non-informative uniform distribution. We embed this truncated Gaussian-Mixture model in a Variational AutoEncoder framework to obtain a general joint clustering and outlier detection approach, called tGM-VAE. When applied to synthetic data with known ground-truth, tGM-VAE is more accurate in clustering dynamic connectivity patterns than existing approaches. On the rs-fMRI data of 593 healthy adolescents from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study, tGM-VAE identified meaningful major connectivity states. The dwell time of these states significantly correlated with age.

Idioma originalEnglish (US)
Título de la publicación alojadaInformation Processing in Medical Imaging - 26th International Conference, IPMI 2019, Proceedings
EditoresAlbert C.S. Chung, Siqi Bao, James C. Gee, Paul A. Yushkevich
EditorialSpringer Verlag
Páginas867-879
Número de páginas13
ISBN (versión impresa)9783030203504
DOI
EstadoPublished - 2019
Publicado de forma externa
Evento26th International Conference on Information Processing in Medical Imaging, IPMI 2019 - Hong Kong, China
Duración: jun 2 2019jun 7 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11492 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conference

Conference26th International Conference on Information Processing in Medical Imaging, IPMI 2019
País/TerritorioChina
CiudadHong Kong
Período6/2/196/7/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Variational Autoencoder with Truncated Mixture of Gaussians for Functional Connectivity Analysis'. En conjunto forman una huella única.

Citar esto