Variational AutoEncoder for Regression: Application to Brain Aging Analysis

Qingyu Zhao, Ehsan Adeli, Nicolas Honnorat, Tuo Leng, Kilian M. Pohl

Producción científica: Conference contribution

59 Citas (Scopus)

Resumen

While unsupervised variational autoencoders (VAE) have become a powerful tool in neuroimage analysis, their application to supervised learning is under-explored. We aim to close this gap by proposing a unified probabilistic model for learning the latent space of imaging data and performing supervised regression. Based on recent advances in learning disentangled representations, the novel generative process explicitly models the conditional distribution of latent representations with respect to the regression target variable. Performing a variational inference procedure on this model leads to joint regularization between the VAE and a neural-network regressor. In predicting the age of 245 subjects from their structural Magnetic Resonance (MR) images, our model is more accurate than state-of-the-art methods when applied to either region-of-interest (ROI) measurements or raw 3D volume images. More importantly, unlike simple feed-forward neural-networks, disentanglement of age in latent representations allows for intuitive interpretation of the structural developmental patterns of the human brain.

Idioma originalEnglish (US)
Título de la publicación alojadaMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditoresDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas823-831
Número de páginas9
ISBN (versión impresa)9783030322441
DOI
EstadoPublished - 2019
Publicado de forma externa
Evento22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duración: oct 13 2019oct 17 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11765 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
País/TerritorioChina
CiudadShenzhen
Período10/13/1910/17/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Variational AutoEncoder for Regression: Application to Brain Aging Analysis'. En conjunto forman una huella única.

Citar esto