TY - JOUR
T1 - Use of pH and kinetic isotope effects to establish chemistry as rate-limiting in oxidation of a peptide substrate by LSD1
AU - Gaweska, Helena
AU - Pozzi, Michelle Henderson
AU - Schmidt, Dawn M.Z.
AU - McCafferty, Dewey G.
AU - Fitzpatrick, Paul F.
PY - 2009/6/16
Y1 - 2009/6/16
N2 - The mechanism of oxidation of a peptide substrate by the flavoprotein lysine-specific demethylase (LSD1) has been examined using the effects of pH and isotopic substitution on steady-state and rapid-reaction kinetic parameters. The substrate contained the 21 N-terminal residues of histone H3, with a dimethylated lysyl residue at position 4. At pH 7.5, the rate constant for flavin reduction, kred, equals kcat, establishing the reductive half-reaction as rate-limiting at physiological pH. Deuteration of the lysyl methyls results in identical kinetic isotope effects of 3.1 ± 0.2 on the kred, kcat, and kcat/Km values for the peptide, establishing C-H bond cleavage as rate-limiting with this substrate. No intermediates between oxidized and reduced flavin can be detected by stopped-flow spectroscopy, consistent with the expectation for a direct hydride transfer mechanism. The kcat/Km value for the peptide is bell-shaped, consistent with a requirement that the nitrogen at the site of oxidation be uncharged and that at least one of the other lysyl residues be charged for catalysis. The D(kcat/K m) value for the peptide is pH-independent, suggesting that the observed value is the intrinsic deuterium kinetic isotope effect for oxidation of this substrate.
AB - The mechanism of oxidation of a peptide substrate by the flavoprotein lysine-specific demethylase (LSD1) has been examined using the effects of pH and isotopic substitution on steady-state and rapid-reaction kinetic parameters. The substrate contained the 21 N-terminal residues of histone H3, with a dimethylated lysyl residue at position 4. At pH 7.5, the rate constant for flavin reduction, kred, equals kcat, establishing the reductive half-reaction as rate-limiting at physiological pH. Deuteration of the lysyl methyls results in identical kinetic isotope effects of 3.1 ± 0.2 on the kred, kcat, and kcat/Km values for the peptide, establishing C-H bond cleavage as rate-limiting with this substrate. No intermediates between oxidized and reduced flavin can be detected by stopped-flow spectroscopy, consistent with the expectation for a direct hydride transfer mechanism. The kcat/Km value for the peptide is bell-shaped, consistent with a requirement that the nitrogen at the site of oxidation be uncharged and that at least one of the other lysyl residues be charged for catalysis. The D(kcat/K m) value for the peptide is pH-independent, suggesting that the observed value is the intrinsic deuterium kinetic isotope effect for oxidation of this substrate.
UR - http://www.scopus.com/inward/record.url?scp=67049098986&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67049098986&partnerID=8YFLogxK
U2 - 10.1021/bi900499w
DO - 10.1021/bi900499w
M3 - Article
C2 - 19408960
AN - SCOPUS:67049098986
SN - 0006-2960
VL - 48
SP - 5440
EP - 5445
JO - Biochemistry
JF - Biochemistry
IS - 23
ER -