TY - JOUR
T1 - The role of phospholipase D in osteoblast response to titanium surface microstructure
AU - Fang, Mimi
AU - Olivares-Navarrete, Rene
AU - Wieland, Marco
AU - Cochran, David L.
AU - Boyan, Barbara D.
AU - Schwartz, Zvi
PY - 2010/6/1
Y1 - 2010/6/1
N2 - Biomaterial surface properties such as microtopography and energy can change cellular responses at the cell-implant interface. Phospholipase D (PLD) is required for the differentiation of osteoblast-like MG63 cells on machined and grit-blasted titanium surfaces. Here, we determined if PLD is also required on microstructured/high-energy substrates and the mechanism involved. shRNAs for human PLD1 and PLD2 were used to silence MG63 cells. Wild-type and PLD1 or PLD1/2 silenced cells were cultured on smooth-pretreatment surfaces (PT); grit-blasted, acid-etched surfaces (SLA); and SLA surfaces modified to have higher surface energy (modSLA). PLD was inhibited with ethanol or activated with 24,25-dihydroxyvitamin-D3 [24R,25(OH)2D3]. As surface roughness/energy increased, PLD mRNA and activity increased, cell number decreased, osteocalcin and osteoprotegerin increased, and protein kinase C (PKC) and alkaline phosphatase specific activities increased. Ethanol inhibited PLD and reduced surface effects on these parameters. There was no effect on these parameters after knockdown of PLD1, but PLD1/2 double knockdown had effects comparable to PLD inhibition. 24R,25(OH)2D3 increased PLD activity and the production of osteocalcin and osteoprotegerin, but decreased cell number on the rough/high-energy surfaces. These results confirm that surface roughness/energy-induced PLD activity is required for osteoblast differentiation and that PLD2 is the main isoform involved in this pathway. PLD is activated by 24R,25(OH)2D3 in a surface-dependent manner and inhibition of PLD reduces the effects of surface microstructure/energy on PKC, suggesting that PLD mediates the stimulatory effect of microstructured/high-energy surfaces via PKC-dependent signaling.
AB - Biomaterial surface properties such as microtopography and energy can change cellular responses at the cell-implant interface. Phospholipase D (PLD) is required for the differentiation of osteoblast-like MG63 cells on machined and grit-blasted titanium surfaces. Here, we determined if PLD is also required on microstructured/high-energy substrates and the mechanism involved. shRNAs for human PLD1 and PLD2 were used to silence MG63 cells. Wild-type and PLD1 or PLD1/2 silenced cells were cultured on smooth-pretreatment surfaces (PT); grit-blasted, acid-etched surfaces (SLA); and SLA surfaces modified to have higher surface energy (modSLA). PLD was inhibited with ethanol or activated with 24,25-dihydroxyvitamin-D3 [24R,25(OH)2D3]. As surface roughness/energy increased, PLD mRNA and activity increased, cell number decreased, osteocalcin and osteoprotegerin increased, and protein kinase C (PKC) and alkaline phosphatase specific activities increased. Ethanol inhibited PLD and reduced surface effects on these parameters. There was no effect on these parameters after knockdown of PLD1, but PLD1/2 double knockdown had effects comparable to PLD inhibition. 24R,25(OH)2D3 increased PLD activity and the production of osteocalcin and osteoprotegerin, but decreased cell number on the rough/high-energy surfaces. These results confirm that surface roughness/energy-induced PLD activity is required for osteoblast differentiation and that PLD2 is the main isoform involved in this pathway. PLD is activated by 24R,25(OH)2D3 in a surface-dependent manner and inhibition of PLD reduces the effects of surface microstructure/energy on PKC, suggesting that PLD mediates the stimulatory effect of microstructured/high-energy surfaces via PKC-dependent signaling.
KW - Mechanism of cell surface interaction
KW - Osteoblast differentiation
KW - Phospholipase D
KW - Titanium surface microstructure and surface energy
KW - Vitamin D metabolites
UR - http://www.scopus.com/inward/record.url?scp=77950653662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950653662&partnerID=8YFLogxK
U2 - 10.1002/jbm.a.32596
DO - 10.1002/jbm.a.32596
M3 - Article
C2 - 19705469
AN - SCOPUS:77950653662
SN - 1549-3296
VL - 93
SP - 897
EP - 909
JO - Journal of Biomedical Materials Research - Part A
JF - Journal of Biomedical Materials Research - Part A
IS - 3
ER -