Sensitization of osteosarcoma to irradiation by targeting nuclear FGFR1

Jin Ah Kim, Noah E. Berlow, Melvin Lathara, Narendra Bharathy, Leah R. Martin, Reshma Purohit, Megan M. Cleary, Qianqian Liu, Joel E. Michalek, Ganapati Srinivasa, Bonnie L. Cole, Sonja D. Chen, Charles Keller

    Producción científica: Articlerevisión exhaustiva

    3 Citas (Scopus)

    Resumen

    Over the past 25 years, chemotherapy regimens for osteosarcoma have failed to improve the 65–70% long-term survival rate. Radiation therapy is generally ineffective except for palliative care. We here investigated whether osteosarcoma can be sensitized to radiation therapy targeting specific molecules in osteosarcoma. Large-scale RNA sequencing analysis in osteosarcoma tissues and cell lines revealed that FGFR1 is the most frequently expressed receptor tyrosine kinase in osteosarcoma. Nuclear FGFR1 (nFGFR1) was observed by subcellular localization assays. The functional studies using a FGFR1IIIb antibody or small molecule FGFR1 inhibitors showed that nFGFR1, but not membrane-bound FGFR1, induces G2 cell-cycle checkpoint adaptation, cell survival and polyploidy following irradiation in osteosarcoma cells. Further, the activation of nFGFR1 induces Histone H3 phosphorylation at Ser 10 and c-jun/c-fos expression to contribute cell survival rendering radiation resistance. Furthermore, an in vivo mouse study revealed that radiation resistance can be reversed by the inhibition of nFGFR1. Our findings provide insights into the potential role of nFGFR1 to radiation resistance. Thus, we propose nFGFR1 could be a potential therapeutic target or a biomarker to determine which patients might benefit from radiation therapy.

    Idioma originalEnglish (US)
    Páginas (desde-hasta)101-108
    Número de páginas8
    PublicaciónBiochemical and Biophysical Research Communications
    Volumen621
    DOI
    EstadoPublished - sept 17 2022

    ASJC Scopus subject areas

    • Molecular Biology
    • Biophysics
    • Biochemistry
    • Cell Biology

    Huella

    Profundice en los temas de investigación de 'Sensitization of osteosarcoma to irradiation by targeting nuclear FGFR1'. En conjunto forman una huella única.

    Citar esto