TY - JOUR
T1 - Role of machine learning techniques to tackle the covid-19 crisis
T2 - Systematic review
AU - Syeda, Hafsa Bareen
AU - Syed, Mahanazuddin
AU - Sexton, Kevin Wayne
AU - Syed, Shorabuddin
AU - Begum, Salma
AU - Syed, Farhanuddin
AU - Prior, Fred
AU - Yu, Feliciano
N1 - Publisher Copyright:
© Hafsa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Salma Begum, Farhanuddin Syed, Fred Prior, Feliciano Yu Jr.
PY - 2021/1
Y1 - 2021/1
N2 - Background: SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. Objective: The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. Methods: A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. Results: The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. Conclusions: In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
AB - Background: SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment plans. Artificial Intelligence (AI)-based technologies have played a substantial role in solving complex problems, and several organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19 pandemic. Objective: The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression. Methods: A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords specific to COVID-19 and AI. Results: The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression. Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that applied AI techniques to detect COVID-19 by using patients' radiological images or laboratory test results were classified under the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression, outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients with COVID-19 were classified under the Disease Progression theme. Conclusions: In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available COVID-19 resources that can assist in facilitating clinical and translational research.
KW - Artificial intelligence
KW - COVID-19
KW - Coronavirus
KW - Deep learning
KW - Epidemiology
KW - Machine learning
KW - Neural network
KW - Pandemic
KW - SARS-CoV-2
KW - Systematic review
UR - http://www.scopus.com/inward/record.url?scp=85100154476&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100154476&partnerID=8YFLogxK
U2 - 10.2196/23811
DO - 10.2196/23811
M3 - Review article
C2 - 33326405
AN - SCOPUS:85100154476
SN - 2291-9694
VL - 9
JO - JMIR Medical Informatics
JF - JMIR Medical Informatics
IS - 1
M1 - e23811
ER -