Robust guidewire segmentation through boosting, clustering and linear programming

Nicolas Honnorat, Ŕegis Vaillant, Nikos Paragios

Producción científica: Conference contribution

7 Citas (Scopus)

Resumen

Fluroscopic imaging provides means to assess the motion of the internal structures and therefore is of great use during surgery. In this paper we propose a novel approach for the segmentation of curvilinear structures in these images. The main challenge to be addressed is the lack of visual support due to the low SNR where traditional edgebased methods fail. Our approach combines machine learning techniques, unsupervised clustering and linear programming. In particular, numerous invariant to position/rotation classifiers are combined to detect candidate pixels of curvilinear structure. These candidates are grouped into consistent geometric segments through the use of a state-of-the art unsupervised clustering algorithm. The complete curvilinear structure is obtained through an ordering of these segments using the elastica model in a linear programming framework. Very promising results were obtained on guide wire segmentation in fluoroscopic images.

Idioma originalEnglish (US)
Título de la publicación alojada2010 7th IEEE International Symposium on Biomedical Imaging
Subtítulo de la publicación alojadaFrom Nano to Macro, ISBI 2010 - Proceedings
Páginas924-927
Número de páginas4
DOI
EstadoPublished - 2010
Publicado de forma externa
Evento7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010 - Rotterdam, Netherlands
Duración: abr 14 2010abr 17 2010

Serie de la publicación

Nombre2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010 - Proceedings

Other

Other7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010
País/TerritorioNetherlands
CiudadRotterdam
Período4/14/104/17/10

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Huella

Profundice en los temas de investigación de 'Robust guidewire segmentation through boosting, clustering and linear programming'. En conjunto forman una huella única.

Citar esto