Riccati-regularized precision matrices for neuroimaging

Nicolas Honnorat, Christos Davatzikos

Producción científica: Conference contribution

3 Citas (Scopus)

Resumen

The introduction of graph theory in neuroimaging has provided invaluable tools for the study of brain connectivity. These methods require the definition of a graph, which is typically derived by estimating the effective connectivity between brain regions through the optimization of an ill-posed inverse problem. Considerable efforts have been devoted to the development of methods extracting sparse connectivity graphs. The present paper aims at highlighting the benefits of an alternative approach.We investigate low-rank L2 regularized matrices recently introduced under the denomination of Riccati regularized precision matrices. We demonstrate their benefits for the analysis of cortical thickness map and the extraction of functional biomarkers from resting state fMRI scans. In addition, we explain how speed and result quality can be further improved with random projections. The promising results obtained using the Human Connectome Project dataset, as well as, the numerous possible extensions and applications suggest that Riccati precision matrices might usefully complement current sparse approaches.

Idioma originalEnglish (US)
Título de la publicación alojadaInformation Processing in Medical Imaging - 25th International Conference, IPMI 2017, Proceedings
EditoresHongtu Zhu, Marc Niethammer, Martin Styner, Hongtu Zhu, Dinggang Shen, Pew-Thian Yap, Stephen Aylward, Ipek Oguz
EditorialSpringer Verlag
Páginas275-286
Número de páginas12
ISBN (versión impresa)9783319590493
DOI
EstadoPublished - 2017
Publicado de forma externa
Evento25th International Conference on Information Processing in Medical Imaging, IPMI 2017 - Boone, United States
Duración: jun 25 2017jun 30 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10265 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conference

Conference25th International Conference on Information Processing in Medical Imaging, IPMI 2017
País/TerritorioUnited States
CiudadBoone
Período6/25/176/30/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Riccati-regularized precision matrices for neuroimaging'. En conjunto forman una huella única.

Citar esto