Quality-based distance measures and applications to clustering

Darin M. Taverna, Marcel Brun, Edward R. Dougherty, Yidong Chen

Producción científica: Conference contribution

Resumen

When analyzing biological data sets, a common approach is to partition the data into clusters. Examples of this include finding a subset of genes with co-regulated expression among experiments, grouping similar disease phenotypes, or implicating regions of genetic variation in disease. The ability to separate the data into subsets depends upon the structure of the distribution of points and the choice of clustering algorithm. Furthermore, the biological relevance of the clustering results is biased by the variation among the data points themselves. We introduce a mathematical quality-based distance metric which will allow all data, regardless of its error, to be included in analysis without the need to introduce a cutoff. This removes the need to exclude points or to change the dimensionality. The advantage of this approach is shown by clustering simulated data with added noise.

Idioma originalEnglish (US)
Título de la publicación alojada2006 IEEE/NLM Life Science Systems and Applications Workshop, LiSA 2006
DOI
EstadoPublished - 2006
Publicado de forma externa
Evento2006 IEEE/NLM Life Science Systems and Applications Workshop, LiSA 2006 - Bethesda, MD, United States
Duración: jul 13 2006jul 14 2006

Serie de la publicación

Nombre2006 IEEE/NLM Life Science Systems and Applications Workshop, LiSA 2006

Other

Other2006 IEEE/NLM Life Science Systems and Applications Workshop, LiSA 2006
País/TerritorioUnited States
CiudadBethesda, MD
Período7/13/067/14/06

ASJC Scopus subject areas

  • Health(social science)
  • Assessment and Diagnosis
  • General Medicine
  • Health Information Management
  • Electrical and Electronic Engineering
  • Human-Computer Interaction
  • Computer Science Applications
  • Signal Processing

Huella

Profundice en los temas de investigación de 'Quality-based distance measures and applications to clustering'. En conjunto forman una huella única.

Citar esto