Protocol to benchmark gene expression signature scoring techniques for single-cell RNA sequencing data in cancer

Nighat Noureen, Xiaojing Wang, Siyuan Zheng

Producción científica: Articlerevisión exhaustiva

Resumen

Scoring gene signatures is common for bulk and single-cell RNA sequencing (scRNAseq) data. Here, using cancer as a data model, we describe steps to benchmark signature scoring techniques for scRNAseq data in the context of uneven gene dropouts. These steps include identifying and comparing deregulated signatures, generating gold standard signatures for specificity and sensitivity tests, and simulating the impact of dropouts using down sampling. The protocol provides a framework for benchmarking scRNAseq algorithms in such context. For complete details on the use and execution of this protocol, please refer to Noureen et al. (2022).1

Idioma originalEnglish (US)
Número de artículo101877
PublicaciónSTAR Protocols
Volumen3
N.º4
DOI
EstadoPublished - dic 16 2022

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Huella

Profundice en los temas de investigación de 'Protocol to benchmark gene expression signature scoring techniques for single-cell RNA sequencing data in cancer'. En conjunto forman una huella única.

Citar esto