Prolongation and cessation of estrous cycles in aging C57BL/6J mice are differentially regulated events.

L. S. Felicio, J. F. Nelson, C. E. Finch

Resultado de la investigación: Articlerevisión exhaustiva

32 Citas (Scopus)


The relative contributions of ovarian failure and hypothalamic-pituitary dysfunction to the prolongation and cessation of estrous cycles were assessed by measuring the ability of acutely ovariectomized (OVX) middle-aged (12 mo) mice to cycle after receiving grafts (under the renal capsule) of ovaries from young (2 mo) mice. The potentially disruptive effect of the acyclic state on the cycling response to grafted, young ovaries was avoided restricting grafting to middle-aged hosts that were still cycling. The effect of chronic exposure to ovarian secretions before the cessation of cyclicity on age-related hypothalamic-pituitary dysfunction was also assessed. The cycling ability of long-term OVX middle-aged mice (i.e., OVX at 3 mo) bearing grafts of young ovaries was compared to that of age-matched acutely OVX controls. Grafted young ovaries extended the cycling lifespan of acutely OVX middle-aged hosts by 60%. The length of this extended cycling lifespan, however, was only 80% of that achieved by young hosts bearing grafts of young ovaries. Young ovaries in middle-aged mice markedly lowered the incidence of long cycles (greater than 5 days), shifting the modal cycle length to 5 days. However, young ovaries in middle-aged mice failed to increase the incidence of 4-day cycles, the modal cycle of young controls. Middle-aged ovaries grafted into young hosts lengthened their cycles and shortened their cycling lifespan to middle-aged values. Long-term ovariectomy failed to increase the cycling lifespan of middle-aged hosts bearing grafts of young ovaries beyond that achieved in acutely OVX mice. Long-term ovariectomy did shorten the modal cycle length of middle-aged mice to 4 days, although the duration of 4-day cycling was only one-third (2 mo) that of young controls. These results indicate that the relative contributions of ovarian and neuroendocrine factors to three major events of reproductive aging vary with each event. Whereas the hypothalamic-pituitary unit appears to play an important role in the initial shift from 4- to 5-day cycles, the aging ovary plays the major role in the subsequent shift to longer cycles and in the ultimate cessation of cyclicity. Although chronic exposure to ovarian secretions during the period of cyclicity does not play a major role in the cessation of cyclicity, it appears to contribute to the hypothalamic-pituitary changes responsible for the initial shift from 4- to 5-day cycles.

Idioma originalEnglish (US)
Páginas (desde-hasta)849-858
Número de páginas10
PublicaciónBiology of reproduction
EstadoPublished - jun 1986
Publicado de forma externa

ASJC Scopus subject areas

  • Reproductive Medicine
  • Cell Biology


Profundice en los temas de investigación de 'Prolongation and cessation of estrous cycles in aging C57BL/6J mice are differentially regulated events.'. En conjunto forman una huella única.

Citar esto