Parallel computation and visualization tools for codetermination analysis of multivariate gene expression relations

Edward B. Suh, Edward R. Dougherty, Seungchan Kim, Michael L. Bittner, Yidong Chen, Daniel E. Russ, Robert L. Martino

Producción científica: Chapter

Resumen

A key goal of functional genomics is to develop methods for determining ways in which individual actions of genes are integrated in the cell. Kim et al. have proposed using the nonlinear coefficient of determination for finding associations between genes (Kim et al., 2000a; Kim et al., 2000b; Dougherty et al., 2000). The method assesses the codetermination of gene transcriptional states based on statistical evaluation of reliably informative subsets of data derived from large-scale gene-expression measurements. It measures the degree to which the transcriptional levels of a small gene set can be used to predict the transcriptional levels of a small gene set can be used to predict the transcriptional state of a target gene in excess of the predictive capability of the mean level of the target. Conditions besides transcriptional features can be used as predictive elements, thus broadening the information that can be evaluated in modelling biological regulation.

Idioma originalEnglish (US)
Título de la publicación alojadaComputational and Statistical Approaches to Genomics
EditorialSpringer US
Páginas297-310
Número de páginas14
ISBN (versión digital)9780387262888
ISBN (versión impresa)0387262873, 9780387262871
DOI
EstadoPublished - 2006
Publicado de forma externa

ASJC Scopus subject areas

  • General Medicine

Huella

Profundice en los temas de investigación de 'Parallel computation and visualization tools for codetermination analysis of multivariate gene expression relations'. En conjunto forman una huella única.

Citar esto