TY - JOUR
T1 - Pan-tumor landscape of fibroblast growth factor receptor 1-4 genomic alterations
AU - Murugesan, K
AU - Necchi, A
AU - Burn, T C
AU - Gjoerup, O
AU - Greenstein, R
AU - Krook, M
AU - López, J A
AU - Montesion, M
AU - Nimeiri, H
AU - Parikh, A R
AU - Roychowdhury, S
AU - Schwemmers, S
AU - Silverman, I M
AU - Vogel, A
N1 - Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
PY - 2022/12
Y1 - 2022/12
N2 - BACKGROUND: Selective tyrosine kinase inhibitors targeting fibroblast growth factor receptor (FGFR) 1-4 genomic alterations are in development or have been approved for FGFR-altered cancers (e.g. bladder cancer and advanced intrahepatic cholangiocarcinoma). Understanding FGFR inhibitor-resistance mechanisms is increasingly relevant; we surveyed the pan-tumor landscape of FGFR1-4 genomic alterations [short variants (SVs), gene rearrangements (REs), and copy number alterations (CNAs)], including their association with tumor mutational burden (TMB) and the genomic comutational landscape.PATIENTS AND METHODS: Comprehensive genomic profiling of 355 813 solid tumor clinical cases was performed using the FoundationOne and FoundationOne CDx assays (Foundation Medicine, Inc.) to identify genomic alterations in >300 cancer-associated genes and TMB (determined on ≤1.1 megabases of sequenced DNA).RESULTS: FGFR1-4 SVs and REs occurred in 9603/355 813 (2.7%), and CNAs in 15 078/355 813 (4.2%) samples. Most common FGFR alterations for bladder cancer, intrahepatic cholangiocarcinoma, and glioma were FGFR3 SVs (1051/7739, 13.6%), FGFR2 REs (618/6641, 9.3%), and FGFR1 SVs (239/11 550, 2.1%), respectively. We found several, potentially clinically relevant, tumor-specific associations between FGFR1-4 genomic alterations and other genomic markers. FGFR3 SV-altered bladder cancers and FGFR1 SV-altered gliomas were significantly less likely to be TMB-high versus unaltered samples. FGFR3 SVs in bladder cancer significantly co-occurred with TERT and CDKN2A/B alterations; TP53 and RB1 alterations were mutually exclusive. In intrahepatic cholangiocarcinoma, FGFR2 REs significantly co-occurred with BAP1 alterations, whereas KRAS, TP53, IDH1, and ARID1A alterations were mutually exclusive. FGFR1 SVs in gliomas significantly co-occurred with H3-3A and PTPN11 alterations, but were mutually exclusive with TERT, EGFR, TP53, and CDKN2A/B alterations.CONCLUSIONS: Overall, our hypothesis-generating findings may help to stratify patients in clinical trials and guide optimal targeted therapy in those with FGFR alterations.
AB - BACKGROUND: Selective tyrosine kinase inhibitors targeting fibroblast growth factor receptor (FGFR) 1-4 genomic alterations are in development or have been approved for FGFR-altered cancers (e.g. bladder cancer and advanced intrahepatic cholangiocarcinoma). Understanding FGFR inhibitor-resistance mechanisms is increasingly relevant; we surveyed the pan-tumor landscape of FGFR1-4 genomic alterations [short variants (SVs), gene rearrangements (REs), and copy number alterations (CNAs)], including their association with tumor mutational burden (TMB) and the genomic comutational landscape.PATIENTS AND METHODS: Comprehensive genomic profiling of 355 813 solid tumor clinical cases was performed using the FoundationOne and FoundationOne CDx assays (Foundation Medicine, Inc.) to identify genomic alterations in >300 cancer-associated genes and TMB (determined on ≤1.1 megabases of sequenced DNA).RESULTS: FGFR1-4 SVs and REs occurred in 9603/355 813 (2.7%), and CNAs in 15 078/355 813 (4.2%) samples. Most common FGFR alterations for bladder cancer, intrahepatic cholangiocarcinoma, and glioma were FGFR3 SVs (1051/7739, 13.6%), FGFR2 REs (618/6641, 9.3%), and FGFR1 SVs (239/11 550, 2.1%), respectively. We found several, potentially clinically relevant, tumor-specific associations between FGFR1-4 genomic alterations and other genomic markers. FGFR3 SV-altered bladder cancers and FGFR1 SV-altered gliomas were significantly less likely to be TMB-high versus unaltered samples. FGFR3 SVs in bladder cancer significantly co-occurred with TERT and CDKN2A/B alterations; TP53 and RB1 alterations were mutually exclusive. In intrahepatic cholangiocarcinoma, FGFR2 REs significantly co-occurred with BAP1 alterations, whereas KRAS, TP53, IDH1, and ARID1A alterations were mutually exclusive. FGFR1 SVs in gliomas significantly co-occurred with H3-3A and PTPN11 alterations, but were mutually exclusive with TERT, EGFR, TP53, and CDKN2A/B alterations.CONCLUSIONS: Overall, our hypothesis-generating findings may help to stratify patients in clinical trials and guide optimal targeted therapy in those with FGFR alterations.
KW - Humans
KW - Bile Duct Neoplasms
KW - Bile Ducts, Intrahepatic
KW - Biomarkers, Tumor/genetics
KW - Cholangiocarcinoma/genetics
KW - Genomics
KW - Glioma/genetics
KW - Receptor, Fibroblast Growth Factor, Type 1/genetics
KW - Urinary Bladder Neoplasms/drug therapy
KW - Receptor Protein-Tyrosine Kinases/metabolism
U2 - 10.1016/j.esmoop.2022.100641
DO - 10.1016/j.esmoop.2022.100641
M3 - Article
C2 - 36462464
SN - 2059-7029
VL - 7
SP - 100641
JO - ESMO Open
JF - ESMO Open
IS - 6
ER -