Optimal morphological peak classification

Edward R. Dougherty, Yidong Chen

Producción científica: Conference articlerevisión exhaustiva

Resumen

The morphological top-hat transform is often used to locate bright peaks in a gray-scale image. The method can be problematic when there are two classes of peaks, one corresponding to valid objects and the other to noise. The present paper employs Bayesian estimation in conjunction with a multinomial distribution corresponding to levels of peak heights in the top-hat image to arrive at an optimal conditional-expectation estimator for the number of images in a random sample of images that contain a given number of valid peaks.

Idioma originalEnglish (US)
Páginas (desde-hasta)123-126
Número de páginas4
PublicaciónProceedings of SPIE - The International Society for Optical Engineering
Volumen2568
DOI
EstadoPublished - ago 11 1995
Publicado de forma externa
EventoNeural, Morphological, and Stochastic Methods in Image and Signal Processing 1995 - San Diego, United States
Duración: jul 9 1995jul 14 1995

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Huella

Profundice en los temas de investigación de 'Optimal morphological peak classification'. En conjunto forman una huella única.

Citar esto