TY - JOUR
T1 - NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions
AU - Trevino, Richard J.
AU - Gliubich, Francesca
AU - Berni, Rodolfo
AU - Cianci, Michele
AU - Chirgwin, John M.
AU - Zanotti, Giuseppe
AU - Horowitz, Paul M.
PY - 1999/5/14
Y1 - 1999/5/14
N2 - The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R.J., Tsalkova, T., Drainer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P.M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and nonnative conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate, X-ray crystallography showed that Δ1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.
AB - The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R.J., Tsalkova, T., Drainer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P.M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and nonnative conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate, X-ray crystallography showed that Δ1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.
UR - http://www.scopus.com/inward/record.url?scp=0033553215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033553215&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.20.13938
DO - 10.1074/jbc.274.20.13938
M3 - Article
C2 - 10318804
AN - SCOPUS:0033553215
SN - 0021-9258
VL - 274
SP - 13938
EP - 13947
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 20
ER -