TY - JOUR
T1 - Neurocognitive impairment in type 2 diabetes
T2 - evidence for shared genetic aetiology
AU - Mollon, Josephine
AU - Curran, Joanne E
AU - Mathias, Samuel R.
AU - Knowles, Emma E.M.
AU - Carlisle, Phoebe
AU - Fox, Peter T.
AU - Olvera, Rene L.
AU - Göring, Harald H.H.
AU - Rodrigue, Amanda
AU - Almasy, Laura A
AU - Duggirala, Ravindranath
AU - Blangero, John C
AU - Glahn, David C.
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Aims/hypothesis: Type 2 diabetes is associated with cognitive impairments, but it is unclear whether common genetic factors influence both type 2 diabetes risk and cognition. Methods: Using data from 1892 Mexican-American individuals from extended pedigrees, including 402 with type 2 diabetes, we examined possible pleiotropy between type 2 diabetes and cognitive functioning, as measured by a comprehensive neuropsychological test battery. Results: Negative phenotypic correlations (ρp) were observed between type 2 diabetes and measures of attention (Continuous Performance Test [CPT d′]: ρp = −0.143, p = 0.001), verbal memory (California Verbal Learning Test [CVLT] recall: ρp = −0.111, p = 0.004) and face memory (Penn Face Memory Test [PFMT]: ρp = −0.127, p = 0.002; PFMT Delayed: ρp = −0.148, p = 2 × 10−4), replicating findings of cognitive impairment in type 2 diabetes. Negative genetic correlations (ρg) were also observed between type 2 diabetes and measures of attention (CPT d′: ρg = −0.401, p = 0.001), working memory (digit span backward test: ρg = −0.380, p = 0.005), and face memory (PFMT: ρg = −0.476, p = 2 × 10−4; PFMT Delayed: ρg = −0.376, p = 0.005), suggesting that the same genetic factors underlying risk for type 2 diabetes also influence poor cognitive performance in these domains. Performance in these domains was also associated with type 2 diabetes risk using an endophenotype ranking value approach. Specifically, on measures of attention (CPT d′: β = −0.219, p = 0.005), working memory (digit span backward: β = −0.326, p = 0.035), and face memory (PFMT: β = −0.171, p = 0.023; PFMT Delayed: β = −0.215, p = 0.005), individuals with type 2 diabetes showed the lowest performance, while unaffected/unrelated individuals showed the highest performance, and those related to an individual with type 2 diabetes performed at an intermediate level. Conclusions/interpretation: These findings suggest that cognitive impairment may be a useful endophenotype of type 2 diabetes and, therefore, help to elucidate the pathophysiological underpinnings of this chronic disease. Data availability: The data analysed in this study is available in dbGaP: www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v2.p2.
AB - Aims/hypothesis: Type 2 diabetes is associated with cognitive impairments, but it is unclear whether common genetic factors influence both type 2 diabetes risk and cognition. Methods: Using data from 1892 Mexican-American individuals from extended pedigrees, including 402 with type 2 diabetes, we examined possible pleiotropy between type 2 diabetes and cognitive functioning, as measured by a comprehensive neuropsychological test battery. Results: Negative phenotypic correlations (ρp) were observed between type 2 diabetes and measures of attention (Continuous Performance Test [CPT d′]: ρp = −0.143, p = 0.001), verbal memory (California Verbal Learning Test [CVLT] recall: ρp = −0.111, p = 0.004) and face memory (Penn Face Memory Test [PFMT]: ρp = −0.127, p = 0.002; PFMT Delayed: ρp = −0.148, p = 2 × 10−4), replicating findings of cognitive impairment in type 2 diabetes. Negative genetic correlations (ρg) were also observed between type 2 diabetes and measures of attention (CPT d′: ρg = −0.401, p = 0.001), working memory (digit span backward test: ρg = −0.380, p = 0.005), and face memory (PFMT: ρg = −0.476, p = 2 × 10−4; PFMT Delayed: ρg = −0.376, p = 0.005), suggesting that the same genetic factors underlying risk for type 2 diabetes also influence poor cognitive performance in these domains. Performance in these domains was also associated with type 2 diabetes risk using an endophenotype ranking value approach. Specifically, on measures of attention (CPT d′: β = −0.219, p = 0.005), working memory (digit span backward: β = −0.326, p = 0.035), and face memory (PFMT: β = −0.171, p = 0.023; PFMT Delayed: β = −0.215, p = 0.005), individuals with type 2 diabetes showed the lowest performance, while unaffected/unrelated individuals showed the highest performance, and those related to an individual with type 2 diabetes performed at an intermediate level. Conclusions/interpretation: These findings suggest that cognitive impairment may be a useful endophenotype of type 2 diabetes and, therefore, help to elucidate the pathophysiological underpinnings of this chronic disease. Data availability: The data analysed in this study is available in dbGaP: www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v2.p2.
KW - Cognitive function
KW - Cognitive impairment
KW - Genetic correlation
KW - Genetic overlap
KW - Type 2 diabetes
UR - http://www.scopus.com/inward/record.url?scp=85078962405&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078962405&partnerID=8YFLogxK
U2 - 10.1007/s00125-020-05101-y
DO - 10.1007/s00125-020-05101-y
M3 - Article
C2 - 32016567
AN - SCOPUS:85078962405
SN - 0012-186X
VL - 63
SP - 977
EP - 986
JO - Diabetologia
JF - Diabetologia
IS - 5
ER -