Multi-label classification for the analysis of human motion quality

Portia E. Taylor, Gustavo J.M. Almeida, Jessica K. Hodgins, Takeo Kanade

Producción científica: Conference contribution

29 Citas (Scopus)

Resumen

Knowing how well an activity is performed is important for home rehabilitation. We would like to not only know if a motion is being performed correctly, but also in what way the motion is incorrect so that we may provide feedback to the user. This paper describes methods for assessing human motion quality using body-worn tri-axial accelerometers and gyroscopes. We use multi-label classifiers to detect subtle errors in exercise performances of eight individuals with knee osteoarthritis, a degenerative disease of the cartilage. We present results obtained using various machine learning methods with decision tree base classifiers. The classifier can detect classes in multi-label data with 75% sensitivity, 90% specificity and 80% accuracy. The methods presented here form the basis for an at-home rehabilitation device that will recognize errors in patient exercise performance, provide appropriate feedback on the performance, and motivate the patient to continue the prescribed regimen.

Idioma originalEnglish (US)
Título de la publicación alojada2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Páginas2214-2218
Número de páginas5
DOI
EstadoPublished - 2012
Publicado de forma externa
Evento34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duración: ago 28 2012sept 1 2012

Serie de la publicación

NombreProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (versión impresa)1557-170X

Conference

Conference34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
País/TerritorioUnited States
CiudadSan Diego, CA
Período8/28/129/1/12

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Huella

Profundice en los temas de investigación de 'Multi-label classification for the analysis of human motion quality'. En conjunto forman una huella única.

Citar esto