TY - JOUR
T1 - Melatonin and mitochondrial function
AU - Leon, Josefa
AU - Acuña-Castroviejo, Dario
AU - Sainz, Rosa M.
AU - Mayo, Juan C.
AU - Tan, Dun Xian
AU - Reiter, Russel J.
PY - 2004/7/2
Y1 - 2004/7/2
N2 - Melatonin is a natural occurring compound with well-known antioxidant properties. In the last decade a new effect of melatonin on mitochondrial homeostasis has been discovered and, although the exact molecular mechanism for this effect remains unknown, it may explain, at least in part, the protective properties found for the indoleamine in degenerative conditions such as aging as well as Parkinson's disease, Alzheimer's disease, epilepsy, sepsis and other injuries such as ischemia-reperfusion. A common feature in these diseases is the existence of mitochondrial damage due to oxidative stress, which may lead to a decrease in the activities of mitochondrial complexes and ATP production, and, as a consequence, a further increase in free radical generation. A vicious cycle thus results under these conditions of oxidative stress with the final consequence being cell death by necrosis or apoptosis. Melatonin is able of directly scavenging a variety of toxic oxygen and nitrogen-based reactants, stimulates antioxidative enzymes, increases the efficiency of the electron transport chain thereby limiting electron leakage and free radical generation, and promotes ATP synthesis. Via these actions, melatonin preserves the integrity of the mitochondria and helps to maintain cell functions and survival.
AB - Melatonin is a natural occurring compound with well-known antioxidant properties. In the last decade a new effect of melatonin on mitochondrial homeostasis has been discovered and, although the exact molecular mechanism for this effect remains unknown, it may explain, at least in part, the protective properties found for the indoleamine in degenerative conditions such as aging as well as Parkinson's disease, Alzheimer's disease, epilepsy, sepsis and other injuries such as ischemia-reperfusion. A common feature in these diseases is the existence of mitochondrial damage due to oxidative stress, which may lead to a decrease in the activities of mitochondrial complexes and ATP production, and, as a consequence, a further increase in free radical generation. A vicious cycle thus results under these conditions of oxidative stress with the final consequence being cell death by necrosis or apoptosis. Melatonin is able of directly scavenging a variety of toxic oxygen and nitrogen-based reactants, stimulates antioxidative enzymes, increases the efficiency of the electron transport chain thereby limiting electron leakage and free radical generation, and promotes ATP synthesis. Via these actions, melatonin preserves the integrity of the mitochondria and helps to maintain cell functions and survival.
KW - Aging
KW - Alzheimer's disease
KW - Ischemia-reperfusion
KW - Melatonin
KW - Mitochondria
KW - Parkinson's disease
KW - Reactive nitrogen species
KW - Reactive oxygen species
KW - Sepsis
UR - http://www.scopus.com/inward/record.url?scp=2942625711&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2942625711&partnerID=8YFLogxK
U2 - 10.1016/j.lfs.2004.03.003
DO - 10.1016/j.lfs.2004.03.003
M3 - Review article
C2 - 15183071
AN - SCOPUS:2942625711
SN - 0024-3205
VL - 75
SP - 765
EP - 790
JO - Life Sciences
JF - Life Sciences
IS - 7
ER -