TY - JOUR
T1 - MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration
AU - Shireman, Paula K.
AU - Contreras-Shannon, Verónica
AU - Ochoa, Oscar
AU - Karia, Bijal P.
AU - Michalek, Joel E.
AU - McManus, Linda M.
PY - 2007/3/1
Y1 - 2007/3/1
N2 - We examined the role of MCP-1, a potent chemotactic and activating factor for macrophages, in perfusion, inflammation, and skeletal muscle regeneration post-ischemic injury. MCP-1-/- or C57Bl/6J control mice [wild-type (WT)] underwent femoral artery excision (FAE). Muscles were collected for histology, assessment of tissue chemokines, and activity measurements of lactate dehydrogenase (LDH) and myeloperoxidase. In MCP-1-/- mice, restoration of perfusion was delayed, and LDH and fiber size, indicators of muscle regeneration, were decreased. Altered inflammation was observed with increased neutrophil accumulation in MCP-1-/-versus WT mice at Days 1 and 3 (P≤0.003), whereas fewer macrophages were present in MCP-1-/- mice at Day 3. As necrotic tissue was removed in WT mice, macrophages decreased (Day 7). In contrast, macrophage accumulation in MCP-1-/- was increased in association with residual necrotic tissue and impaired muscle regeneration. Consistent with altered inflammation, neutrophil chemotactic factors (keratinocyte-derived chemokine and macrophage inflammatory protein-2) were increased at Day 1 post-FAE. The macrophage chemotactic factor MCP-5 was increased significantly in WT mice at Day 3 compared with MCP-1-/-mice. However, at post-FAE Day 7, MCP-5 was significantly elevated in MCP-1-/- mice versus WT mice. Addition of exogenous MCP-1 did not induce proliferation in murine myoblasts (C2C12 cells) in vitro. MCP-1 is essential for reperfusion and the successful completion of normal skeletal muscle regeneration after ischemic tissue injury. Impaired muscle regeneration in MCP-1-/- mice suggests an important role for macrophages and MCP-1 in tissue reparative processes.
AB - We examined the role of MCP-1, a potent chemotactic and activating factor for macrophages, in perfusion, inflammation, and skeletal muscle regeneration post-ischemic injury. MCP-1-/- or C57Bl/6J control mice [wild-type (WT)] underwent femoral artery excision (FAE). Muscles were collected for histology, assessment of tissue chemokines, and activity measurements of lactate dehydrogenase (LDH) and myeloperoxidase. In MCP-1-/- mice, restoration of perfusion was delayed, and LDH and fiber size, indicators of muscle regeneration, were decreased. Altered inflammation was observed with increased neutrophil accumulation in MCP-1-/-versus WT mice at Days 1 and 3 (P≤0.003), whereas fewer macrophages were present in MCP-1-/- mice at Day 3. As necrotic tissue was removed in WT mice, macrophages decreased (Day 7). In contrast, macrophage accumulation in MCP-1-/- was increased in association with residual necrotic tissue and impaired muscle regeneration. Consistent with altered inflammation, neutrophil chemotactic factors (keratinocyte-derived chemokine and macrophage inflammatory protein-2) were increased at Day 1 post-FAE. The macrophage chemotactic factor MCP-5 was increased significantly in WT mice at Day 3 compared with MCP-1-/-mice. However, at post-FAE Day 7, MCP-5 was significantly elevated in MCP-1-/- mice versus WT mice. Addition of exogenous MCP-1 did not induce proliferation in murine myoblasts (C2C12 cells) in vitro. MCP-1 is essential for reperfusion and the successful completion of normal skeletal muscle regeneration after ischemic tissue injury. Impaired muscle regeneration in MCP-1-/- mice suggests an important role for macrophages and MCP-1 in tissue reparative processes.
KW - CCL2
KW - Chemokines
KW - Ischemia
KW - Macrophage
KW - Neutrophils
UR - http://www.scopus.com/inward/record.url?scp=33847772967&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847772967&partnerID=8YFLogxK
U2 - 10.1189/jlb.0506356
DO - 10.1189/jlb.0506356
M3 - Article
C2 - 17135576
AN - SCOPUS:33847772967
SN - 0741-5400
VL - 81
SP - 775
EP - 785
JO - Journal of Leukocyte Biology
JF - Journal of Leukocyte Biology
IS - 3
ER -