Resumen
Accurate prediction of Alzheimer's disease (AD) is important for the early diagnosis and treatment of this condition. Mild cognitive impairment (MCI) is an early stage of AD. Therefore, patients with MCI who are at high risk of fully developing AD should be identified to accurately predict AD. However, the relationship between brain images and AD is difficult to construct because of the complex characteristics of neuroimaging data. To address this problem, we present a longitudinal measurement of MCI brain images and a hierarchical classification method for AD prediction. Longitudinal images obtained from individuals with MCI were investigated to acquire important information on the longitudinal changes, which can be used to classify MCI subjects as either MCI conversion (MCIc) or MCI non-conversion (MCInc) individuals. Moreover, a hierarchical framework was introduced to the classifier to manage high feature dimensionality issues and incorporate spatial information for improving the prediction accuracy. The proposed method was evaluated using 131 patients with MCI (70 MCIc and 61 MCInc) based on MRI scans taken at different time points. Results showed that the proposed method achieved 79.4% accuracy for the classification of MCIc versus MCInc, thereby demonstrating very promising performance for AD prediction.
Idioma original | English (US) |
---|---|
Número de artículo | 39880 |
Publicación | Scientific reports |
Volumen | 7 |
DOI | |
Estado | Published - ene 12 2017 |
Publicado de forma externa | Sí |
ASJC Scopus subject areas
- General
Acceder al documento
Otros archivos y enlaces
Huella
Profundice en los temas de investigación de 'Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer's disease'. En conjunto forman una huella única.Citar esto
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
En: Scientific reports, Vol. 7, 39880, 12.01.2017.
Producción científica: Article › revisión exhaustiva
}
TY - JOUR
T1 - Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer's disease
AU - Huang, Meiyan
AU - Yang, Wei
AU - Feng, Qianjin
AU - Chen, Wufan
AU - Weiner, Michael W.
AU - Aisen, Paul
AU - Petersen, Ronald
AU - Jack, Clifford R.
AU - Jagust, William
AU - Trojanowki, John Q.
AU - Toga, Arthur W.
AU - Beckett, Laurel
AU - Green, Robert C.
AU - Saykin, Andrew J.
AU - Morris, John C.
AU - Shaw, Leslie M.
AU - Kaye, Jeffrey
AU - Quinn, Joseph
AU - Silbert, Lisa
AU - Lind, Betty
AU - Carter, Raina
AU - Dolen, Sara
AU - Schneider, Lon S.
AU - Pawluczyk, Sonia
AU - Beccera, Mauricio
AU - Teodoro, Liberty
AU - Spann, Bryan M.
AU - Brewer, James
AU - Vanderswag, Helen
AU - Fleisher, Adam
AU - Heidebrink, Judith L.
AU - Lord, Joanne L.
AU - Mason, Sara S.
AU - Albers, Colleen S.
AU - Knopman, David
AU - Johnson, Kris
AU - Doody, Rachelle S.
AU - Villanueva-Meyer, Javier
AU - Chowdhury, Munir
AU - Rountree, Susan
AU - Dang, Mimi
AU - Stern, Yaakov
AU - Honig, Lawrence S.
AU - Bell, Karen L.
AU - Ances, Beau
AU - Carroll, Maria
AU - Creech, Mary L.
AU - Franklin, Erin
AU - Mintun, Mark A.
AU - Schneider, Stacy
AU - Oliver, Angela
AU - Marson, Daniel
AU - Griffith, Randall
AU - Clark, David
AU - Geldmacher, David
AU - Brockington, John
AU - Roberson, Erik
AU - Love, Marissa Natelson
AU - Grossman, Hillel
AU - Mitsis, Effie
AU - Shah, Raj C.
AU - DeToledo-Morrell, Leyla
AU - Duara, Ranjan
AU - Varon, Daniel
AU - Greig, Maria T.
AU - Roberts, Peggy
AU - Albert, Marilyn
AU - Onyike, Chiadi
AU - D'Agostino, Daniel
AU - Kielb, Stephanie
AU - Galvin, James E.
AU - Cerbone, Brittany
AU - Michel, Christina A.
AU - Pogorelec, Dana M.
AU - Rusinek, Henry
AU - De Leon, Mony J.
AU - Glodzik, Lidia
AU - De Santi, Susan
AU - Murali Doraiswamy, P.
AU - Petrella, Jeffrey R.
AU - Borges-Neto, Salvador
AU - Wong, Terence Z.
AU - Coleman, Edward
AU - Smith, Charles D.
AU - Jicha, Greg
AU - Hardy, Peter
AU - Sinha, Partha
AU - Oates, Elizabeth
AU - Conrad, Gary
AU - Porsteinsson, Anton P.
AU - Goldstein, Bonnie S.
AU - Martin, Kim
AU - Makino, Kelly M.
AU - Saleem Ismail, M.
AU - Brand, Connie
AU - Mulnard, Ruth A.
AU - Thai, Gaby
AU - Mc-Adams-Ortiz, Catherine
AU - Womack, Kyle
AU - Mathews, Dana
AU - Quiceno, Mary
AU - Levey, Allan I.
AU - Lah, James J.
AU - Cellar, Janet S.
AU - Burns, Jeffrey M.
AU - Swerdlow, Russell H.
AU - Brooks, William M.
AU - Apostolova, Liana
AU - Tingus, Kathleen
AU - Woo, Ellen
AU - Silverman, Daniel H.S.
AU - Lu, Po H.
AU - Bartzokis, George
AU - Graff-Radford, Neill R.
AU - Parfitt, Francine
AU - Kendall, Tracy
AU - Johnson, Heather
AU - Farlow, Martin R.
AU - Hake, Ann Marie
AU - Brosch, Jared R.
AU - Herring, Scott
AU - Hunt, Cynthia
AU - Van Dyck, Christopher H.
AU - Carson, Richard E.
AU - MacAvoy, Martha G.
AU - Varma, Pradeep
AU - Chertkow, Howard
AU - Bergman, Howard
AU - Hosein, Chris
AU - Black, Sandra
AU - Stefanovic, Bojana
AU - Caldwell, Curtis
AU - Hsiung, Ging Yuek Robin
AU - Feldman, Howard
AU - Mudge, Benita
AU - Assaly, Michele
AU - Finger, Elizabeth
AU - Pasternack, Stephen
AU - Rachisky, Irina
AU - Trost, Dick
AU - Kertesz, Andrew
AU - Bernick, Charles
AU - Munic, Donna
AU - Mesulam, Marek Marsel
AU - Lipowski, Kristine
AU - Weintraub, Sandra
AU - Bonakdarpour, Borna
AU - Kerwin, Diana
AU - Wu, Chuang Kuo
AU - Johnson, Nancy
AU - Sadowsky, Carl
AU - Villena, Teresa
AU - Turner, Raymond Scott
AU - Reynolds, Brigid
AU - Sperling, Reisa A.
AU - Johnson, Keith A.
AU - Marshall, Gad
AU - Yesavage, Jerome
AU - Taylor, Joy L.
AU - Lane, Barton
AU - Rosen, Allyson
AU - Tinklenberg, Jared
AU - Sabbagh, Marwan N.
AU - Belden, Christine M.
AU - Jacobson, Sandra A.
AU - Sirrel, Sherye A.
AU - Kowall, Neil
AU - Killiany, Ronald
AU - Budson, Andrew E.
AU - Norbash, Alexander
AU - Lynn Johnson, Patricia
AU - Obisesan, Thomas O.
AU - Wolday, Saba
AU - Allard, Joanne
AU - Lerner, Alan
AU - Ogrocki, Paula
AU - Tatsuoka, Curtis
AU - Fatica, Parianne
AU - Maillard, Pauline
AU - Olichney, John
AU - DeCarli, Charles
AU - Carmichael, Owen
AU - Kittur, Smita
AU - Borrie, Michael
AU - Lee, T. Y.
AU - Bartha, Rob
AU - Johnson, Sterling
AU - Asthana, Sanjay
AU - Carlsson, Cynthia M.
AU - Potkin, Steven G.
AU - Preda, Adrian
AU - Nguyen, Dana
AU - Tariot, Pierre
AU - Burke, Anna
AU - Trncic, Nadira
AU - Reeder, Stephanie
AU - Bates, Vernice
AU - Capote, Horacio
AU - Rainka, Michelle
AU - Scharre, Douglas W.
AU - Kataki, Maria
AU - Adeli, Anahita
AU - Zimmerman, Earl A.
AU - Celmins, Dzintra
AU - Brown, Alice D.
AU - Pearlson, Godfrey D.
AU - Blank, Karen
AU - Anderson, Karen
AU - Flashman, Laura A.
AU - Seltzer, Marc
AU - Hynes, Mary L.
AU - Santulli, Robert B.
AU - Sink, Kaycee M.
AU - Gordineer, Leslie
AU - Williamson, Jeff D.
AU - Garg, Pradeep
AU - Watkins, Franklin
AU - Ott, Brian R.
AU - Querfurth, Henry
AU - Tremont, Geoffrey
AU - Salloway, Stephen
AU - Malloy, Paul
AU - Correia, Stephen
AU - Rosen, Howard J.
AU - Miller, Bruce L.
AU - Perry, David
AU - Mintzer, Jacobo
AU - Spicer, Kenneth
AU - Bachman, David
AU - Pomara, Nunzio
AU - Hernando, Raymundo
AU - Sarrael, Antero
AU - Relkin, Norman
AU - Chaing, Gloria
AU - Lin, Michael
AU - Ravdin, Lisa
AU - Smith, Amanda
AU - Raj, Balebail Ashok
AU - Fargher, Kristin
N1 - Publisher Copyright: © The Author(s) 2017.
PY - 2017/1/12
Y1 - 2017/1/12
N2 - Accurate prediction of Alzheimer's disease (AD) is important for the early diagnosis and treatment of this condition. Mild cognitive impairment (MCI) is an early stage of AD. Therefore, patients with MCI who are at high risk of fully developing AD should be identified to accurately predict AD. However, the relationship between brain images and AD is difficult to construct because of the complex characteristics of neuroimaging data. To address this problem, we present a longitudinal measurement of MCI brain images and a hierarchical classification method for AD prediction. Longitudinal images obtained from individuals with MCI were investigated to acquire important information on the longitudinal changes, which can be used to classify MCI subjects as either MCI conversion (MCIc) or MCI non-conversion (MCInc) individuals. Moreover, a hierarchical framework was introduced to the classifier to manage high feature dimensionality issues and incorporate spatial information for improving the prediction accuracy. The proposed method was evaluated using 131 patients with MCI (70 MCIc and 61 MCInc) based on MRI scans taken at different time points. Results showed that the proposed method achieved 79.4% accuracy for the classification of MCIc versus MCInc, thereby demonstrating very promising performance for AD prediction.
AB - Accurate prediction of Alzheimer's disease (AD) is important for the early diagnosis and treatment of this condition. Mild cognitive impairment (MCI) is an early stage of AD. Therefore, patients with MCI who are at high risk of fully developing AD should be identified to accurately predict AD. However, the relationship between brain images and AD is difficult to construct because of the complex characteristics of neuroimaging data. To address this problem, we present a longitudinal measurement of MCI brain images and a hierarchical classification method for AD prediction. Longitudinal images obtained from individuals with MCI were investigated to acquire important information on the longitudinal changes, which can be used to classify MCI subjects as either MCI conversion (MCIc) or MCI non-conversion (MCInc) individuals. Moreover, a hierarchical framework was introduced to the classifier to manage high feature dimensionality issues and incorporate spatial information for improving the prediction accuracy. The proposed method was evaluated using 131 patients with MCI (70 MCIc and 61 MCInc) based on MRI scans taken at different time points. Results showed that the proposed method achieved 79.4% accuracy for the classification of MCIc versus MCInc, thereby demonstrating very promising performance for AD prediction.
UR - http://www.scopus.com/inward/record.url?scp=85009350821&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009350821&partnerID=8YFLogxK
U2 - 10.1038/srep39880
DO - 10.1038/srep39880
M3 - Article
C2 - 28079104
AN - SCOPUS:85009350821
SN - 2045-2322
VL - 7
JO - Scientific reports
JF - Scientific reports
M1 - 39880
ER -