Linkage analysis without defined pedigrees

Aaron G. Day-Williams, John Blangero, Thomas D. Dyer, Kenneth Lange, Eric M. Sobel

Resultado de la investigación: Articlerevisión exhaustiva

33 Citas (Scopus)


The need to collect accurate and complete pedigree information has been a drawback of family-based linkage and association studies. Even in case-control studies, investigators should be aware of, and condition on, familial relationships. In single nucleotide polymorphism (SNP) genome scans, relatedness can be directly inferred from the genetic data rather than determined through interviews. Various methods of estimating relatedness have previously been implemented, most notably in PLINK. We present new fast and accurate algorithms for estimating global and local kinship coefficients from dense SNP genotypes. These algorithms require only a single pass through the SNP genotype data. We also show that these estimates can be used to cluster individuals into pedigrees. With these estimates in hand, quantitative trait locus linkage analysis proceeds via traditional variance components methods without any prior relationship information. We demonstrate the success of our algorithms on simulated and real data sets. Our procedures make linkage analysis as easy as a typical genomewide association study.

Idioma originalEnglish (US)
Páginas (desde-hasta)360-370
Número de páginas11
PublicaciónGenetic epidemiology
EstadoPublished - jul 2011
Publicado de forma externa

ASJC Scopus subject areas

  • Genetics(clinical)
  • Epidemiology


Profundice en los temas de investigación de 'Linkage analysis without defined pedigrees'. En conjunto forman una huella única.

Citar esto