Resumen
Mechanical loading is well known to stimulate bone remodeling. Load-driven interstitial fluid flow and molecular transport have been postulated to play a role in the enhancement of bone formation. In order to evaluate load-driven molecular transport in a lacunocanalicular network we conducted fluorescence recovery after photobleaching (FRAP) experiments using lacunae stained with uranine (376 Da). Loads were applied to a mouse femur ex vivo with a novel knee-loading modality where the distal epiphysis was loaded with a sinusoidal force at 2 Hz. The lacunae in the diaphysis located 25% (4 mm) proximal to the loading site were photobleached and sequentially imaged and a time constant for fluorescence recovery was determined both with and without knee loading. The time constant was estimated as the period to recover 63% of fluorescent intensity using a best-fit exponential curve. The results reveal that the applied loads shortened the time constant from 33 ± 9 s with non-loading control to 25 ± 11 s with knee loading (p = 0.0014). The strain in the measurement site was <100 μstain along the femoral midshaft which was an order of magnitude smaller than the minimum effective strain threshold for bone remodeling. Taken together the current study supports the notion that molecular transport in cortical bone is enhanced by the loads applied to the epiphysis without inducing significant in situ strain in the diaphysis.
Idioma original | English (US) |
---|---|
Páginas (desde-hasta) | 1600-1606 |
Número de páginas | 7 |
Publicación | Annals of Biomedical Engineering |
Volumen | 34 |
N.º | 10 |
DOI | |
Estado | Published - oct 2006 |
Publicado de forma externa | Sí |
ASJC Scopus subject areas
- Biomedical Engineering