TY - JOUR
T1 - Interstitial lung disease and pulmonary fibrosis in hermansky-pudlak syndrome type 2, an adaptor protein-3 complex disease
AU - Gochuico, Bernadette R.
AU - Huizing, Marjan
AU - Golas, Gretchen A.
AU - Scher, Charles D.
AU - Tsokos, Maria
AU - Denver, Stacey D.
AU - Frei-Jones, Melissa J.
AU - Gahl, William A.
N1 - Funding Information:
We thank Philip J Daroca, Jr, and the Electron Microscopy Laboratory of Tu-lane Medical Center for providing electron microscopy images. We also thank our patients who participated in this study for their contributions to this research. This study was supported by the Intramural Research Program of the National Human Genome Research Institute and the National Cancer Institute, National Institutes of Health, Bethesda, MD.
PY - 2012/1
Y1 - 2012/1
N2 - Pulmonary fibrosis develops in Hermansky-Pudlak syndrome (HPS) types 1 and 4. Limited information is available about lung disease in HPS type 2 (HPS-2), which is characterized by abnormal function of the adaptor protein-3 (AP-3) complex. To define lung disease in HPS-2, one child and two adults with HPS-2 were evaluated at the National Institutes of Health on at least two visits, and another child was evaluated at the University of Texas Health Science Center San Antonio. All four subjects with HPS-2 had findings of interstitial lung disease (ILD) on a high-resolution computed tomography scan of the chest. The predominant feature was ground glass opacification. Subject 1, a 14-year-old male, and subject 4, a 4-year-old male, had severe ILD, pulmonary fibrosis, secondary pulmonary hypertension and recurrent lung infections. Lung biopsy performed at 20 months of age in subject 1 revealed interstitial fibrosis and prominent type II pneumocyte hyperplasia without lamellar body enlargement. Subject 2, a 27-year-old male smoker, had mild ILD. Subject 3, a 22-year-old male nonsmoker and brother of subject 2, had minimal ILD. Severe impairment of gas exchange was found in subjects 1 and 4 and not in subjects 2 or 3. Plasma concentrations of transforming growth factor-β1 and interleukin-17A correlated with severity of HPS-2 ILD. These data show that children and young adults with HPS-2 and functional defects of the AP-3 complex are at risk for ILD and pulmonary fibrosis.
AB - Pulmonary fibrosis develops in Hermansky-Pudlak syndrome (HPS) types 1 and 4. Limited information is available about lung disease in HPS type 2 (HPS-2), which is characterized by abnormal function of the adaptor protein-3 (AP-3) complex. To define lung disease in HPS-2, one child and two adults with HPS-2 were evaluated at the National Institutes of Health on at least two visits, and another child was evaluated at the University of Texas Health Science Center San Antonio. All four subjects with HPS-2 had findings of interstitial lung disease (ILD) on a high-resolution computed tomography scan of the chest. The predominant feature was ground glass opacification. Subject 1, a 14-year-old male, and subject 4, a 4-year-old male, had severe ILD, pulmonary fibrosis, secondary pulmonary hypertension and recurrent lung infections. Lung biopsy performed at 20 months of age in subject 1 revealed interstitial fibrosis and prominent type II pneumocyte hyperplasia without lamellar body enlargement. Subject 2, a 27-year-old male smoker, had mild ILD. Subject 3, a 22-year-old male nonsmoker and brother of subject 2, had minimal ILD. Severe impairment of gas exchange was found in subjects 1 and 4 and not in subjects 2 or 3. Plasma concentrations of transforming growth factor-β1 and interleukin-17A correlated with severity of HPS-2 ILD. These data show that children and young adults with HPS-2 and functional defects of the AP-3 complex are at risk for ILD and pulmonary fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=84856998882&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856998882&partnerID=8YFLogxK
U2 - 10.2119/molmed.2011.00198
DO - 10.2119/molmed.2011.00198
M3 - Article
C2 - 22009278
AN - SCOPUS:84856998882
SN - 1076-1551
VL - 18
SP - 56
EP - 64
JO - Molecular Medicine
JF - Molecular Medicine
IS - 1
ER -