Integrating DNA methylation and gene expression data in a single gene network using the iNETgrate package

Sogand Sajedi, Ghazal Ebrahimi, Raheleh Roudi, Isha Mehta, Amirreza Heshmat, Hanie Samimi, Shiva Kazempour, Aamir Zainulabadeen, Thomas Roderick Docking, Sukeshi Patel Arora, Francisco Cigarroa, Sudha Seshadri, Aly Karsan, Habil Zare

Producción científica: Articlerevisión exhaustiva

1 Cita (Scopus)

Resumen

Analyzing different omics data types independently is often too restrictive to allow for detection of subtle, but consistent, variations that are coherently supported based upon different assays. Integrating multi-omics data in one model can increase statistical power. However, designing such a model is challenging because different omics are measured at different levels. We developed the iNETgrate package (https://bioconductor.org/packages/iNETgrate/) that efficiently integrates transcriptome and DNA methylation data in a single gene network. Applying iNETgrate on five independent datasets improved prognostication compared to common clinical gold standards and a patient similarity network approach.

Idioma originalEnglish (US)
Número de artículo21721
PublicaciónScientific reports
Volumen13
N.º1
DOI
EstadoPublished - dic 2023

ASJC Scopus subject areas

  • General

Huella

Profundice en los temas de investigación de 'Integrating DNA methylation and gene expression data in a single gene network using the iNETgrate package'. En conjunto forman una huella única.

Citar esto