Influence of stent edge angle on endothelialization in an in vitro model

M. Hamuro, J. C. Palmaz, E. A. Sprague, C. Fuss, J. Luo

Producción científica: Articlerevisión exhaustiva

30 Citas (Scopus)


PURPOSE: To investigate the influence of topographic features in the path of migrating endothelial cells, specifically the effect of edge angle of intravascular metallic material on endothelialization. MATERIALS AND METHODS: Flat 1-cm × 1-cm 316-L pieces of stainless steel were placed on confluent monolayers of human aortic endothelial cells. The thickness of each metal piece was ground to achieve an edge angle of 35°, 70°, 90°, or 140° (n = 6 each) in relation to the endothelial surface. Migration distance and density of endothelial cell coverage on the metal pieces were measured in groups of six each under static conditions at 4, 7, and 11 days and flow conditions (16 dynes/cm2) at 4 days. RESULTS: Endothelial cell migration distance along the surface of the pieces with edge angles of 35° was significantly greater than that with those with larger angles (P < .05) under static and flow conditions. The migration distances on the 35° piece were 87.5%, 47.3%, 57.1%, and 66.1% greater than those on the 90° piece at the upstream, downstream, right, and left edges, respectively. There were no significant differences in cell density among different angle groups under flow or static conditions. CONCLUSION: The edge angle of intravascular metallic material has an influence on the rate of endothelialization. A smaller edge angle facilitates endothelialization over metallic material when compared to a larger angle. These results demonstrate the importance of metallic stent profile on endothelialization rate.

Idioma originalEnglish (US)
Páginas (desde-hasta)607-611
Número de páginas5
PublicaciónJournal of Vascular and Interventional Radiology
EstadoPublished - 2001

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Radiology Nuclear Medicine and imaging


Profundice en los temas de investigación de 'Influence of stent edge angle on endothelialization in an in vitro model'. En conjunto forman una huella única.

Citar esto