TY - JOUR
T1 - Hyperhomocysteinemia impairs endothelium-derived hyperpolarizing factor-mediated vasorelaxation in transgenic cystathionine beta synthase-deficient Mice
AU - Cheng, Zhongjian
AU - Jiang, Xiaohua
AU - Kruger, Warren D.
AU - Praticò, Domenico
AU - Gupta, Sapna
AU - Mallilankaraman, Karthik
AU - Madesh, Muniswamy
AU - Schafer, Andrew I.
AU - Durante, William
AU - Yang, Xiaofeng
AU - Wang, Hong
PY - 2011/8/18
Y1 - 2011/8/18
N2 - Hyperhomocysteinemia (HHcy) is associated with endothelial dysfunction (ED), but the mechanism is largely unknown. In this study, we investigated the role and mechanism of HHcy-induced ED in microvasculature in our newly established mouse model of severe HHcy (plasma total homocysteine, 169.5μM). We found that severe HHcy impaired nitric oxide (NO)-and endothelium-derived hyperpolarizing factor (EDHF)-mediated, endothelium-dependent relaxations of small mesenteric arteries (SMAs). Endothelium-independent and prostacyclin-mediated endothelium-dependent relaxations were not changed. A nonselective Ca2+-activated potassium channel (KCa) inhibitor completely blocked EDHF-mediated relaxation. Selective blockers for small-conductance KCa (SK) or intermediate-conductance KCa (IK) failed to inhibit EDHF-mediated relaxation in HHcy mice. HHcy increased the levels of SK3 and IK1 protein, superoxide (O2-), and 3-nitrotyrosine in the endothelium of SMAs. Preincubation with antioxidants and peroxynitrite (ONOO-) inhibitors improved endothelium-dependent and EDHF-mediated relaxations and decreased O2- production in SMAs from HHcy mice. Further, EDHF-mediated relaxation was inhibited by ONOO- and prevented by catalase in the control mice. Finally, L-homocysteine stimulated O2- production, which was reversed by antioxidants, and increased SK/IK protein levels and tyrosine nitration in cultured human cardiac microvascular endothelial cells. Our results suggest that HHcy impairs EDHF relaxation in SMAs by inhibiting SK/IK activities via oxidation- and tyrosine nitration-related mechanisms.
AB - Hyperhomocysteinemia (HHcy) is associated with endothelial dysfunction (ED), but the mechanism is largely unknown. In this study, we investigated the role and mechanism of HHcy-induced ED in microvasculature in our newly established mouse model of severe HHcy (plasma total homocysteine, 169.5μM). We found that severe HHcy impaired nitric oxide (NO)-and endothelium-derived hyperpolarizing factor (EDHF)-mediated, endothelium-dependent relaxations of small mesenteric arteries (SMAs). Endothelium-independent and prostacyclin-mediated endothelium-dependent relaxations were not changed. A nonselective Ca2+-activated potassium channel (KCa) inhibitor completely blocked EDHF-mediated relaxation. Selective blockers for small-conductance KCa (SK) or intermediate-conductance KCa (IK) failed to inhibit EDHF-mediated relaxation in HHcy mice. HHcy increased the levels of SK3 and IK1 protein, superoxide (O2-), and 3-nitrotyrosine in the endothelium of SMAs. Preincubation with antioxidants and peroxynitrite (ONOO-) inhibitors improved endothelium-dependent and EDHF-mediated relaxations and decreased O2- production in SMAs from HHcy mice. Further, EDHF-mediated relaxation was inhibited by ONOO- and prevented by catalase in the control mice. Finally, L-homocysteine stimulated O2- production, which was reversed by antioxidants, and increased SK/IK protein levels and tyrosine nitration in cultured human cardiac microvascular endothelial cells. Our results suggest that HHcy impairs EDHF relaxation in SMAs by inhibiting SK/IK activities via oxidation- and tyrosine nitration-related mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=80051915426&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051915426&partnerID=8YFLogxK
U2 - 10.1182/blood-2011-01-333310
DO - 10.1182/blood-2011-01-333310
M3 - Article
C2 - 21653942
AN - SCOPUS:80051915426
SN - 0006-4971
VL - 118
SP - 1998
EP - 2006
JO - Blood
JF - Blood
IS - 7
ER -