TY - JOUR
T1 - Genome-wide association with select biomarker traits in the Framingham Heart Study
AU - Benjamin, Emelia J.
AU - Dupuis, Josée
AU - Larson, Martin G.
AU - Lunetta, Kathryn L.
AU - Booth, Sarah L.
AU - Govindaraju, Diddahally R.
AU - Kathiresan, Sekar
AU - Keaney, John F.
AU - Keyes, Michelle J.
AU - Lin, Jing Ping
AU - Meigs, James B.
AU - Robins, Sander J.
AU - Rong, Jian
AU - Schnabel, Renate
AU - Vita, Joseph A.
AU - Wang, Thomas J.
AU - Wilson, Peter W.F.
AU - Wolf, Philip A.
AU - Vasan, Ramachandran S.
PY - 2007/9/19
Y1 - 2007/9/19
N2 - Background: Systemic biomarkers provide insights into disease pathogenesis, diagnosis, and risk stratification. Many systemic biomarker concentrations are heritable phenotypes. Genome-wide association studies (GWAS) provide mechanisms to investigate the genetic contributions to biomarker variability unconstrained by current knowledge of physiological relations. Methods: We examined the association of Affymetrix 100K GeneChip single nucleotide polymorphisms (SNPs) to 22 systemic biomarker concentrations in 4 biological domains: inflammation/oxidative stress; natriuretic peptides; liver function; and vitamins. Related members of the Framingham Offspring cohort (n = 1012; mean age 59 ± 10 years, 51% women) had both phenotype and genotype data (minimum-maximum per phenotype n = 507-1008). We used Generalized Estimating Equations (GEE), Family Based Association Tests (FBAT) and variance components linkage to relate SNPs to multivariable-adjusted biomarker residuals. Autosomal SNPs (n = 70,987) meeting the following criteria were studied: minor allele frequency ≥ 10%, call rate ≥ 80% and Hardy-Weinberg equilibrium p ≥ 0.001. Results: With GEE, 58 SNPs had p < 10-6: the top SNPs were rs2494250 (p = 1.00*10-14) and rs4128725 (p = 3.68*10-12) for monocyte chemoattractant protein-1 (MCP1), and rs2794520 (p = 2.83*10-8) and rs2808629 (p = 3.19*10-8) for C-reactive protein (CRP) averaged from 3 examinations (over about 20 years). With FBAT, 11 SNPs had p < 10-6: the top SNPs were the same for MCP1 (rs4128725, p = 3.28*10-8, and rs2494250, p = 3.55*10-8), and also included B-type natriuretic peptide (rs437021, p = 1.01*10-6) and Vitamin K percent undercarboxylated osteocalcin (rs2052028, p = 1.07*10-6). The peak LOD (logarithm of the odds) scores were for MCP1 (4.38, chromosome 1) and CRP (3.28, chromosome 1; previously described) concentrations; of note the 1.5 support interval included the MCP1 and CRP SNPs reported above (GEE model). Previous candidate SNP associations with circulating CRP concentrations were replicated at p < 0.05; the SNPs rs2794520 and rs2808629 are in linkage disequilibrium with previously reported SNPs. GEE, FBAT and linkage results are posted at http://www.ncbi.nlm.nih.gov/projects/gap/ cgi-bin/study.cgi?id=phs000007. Conclusion: The Framingham GWAS represents a resource to describe potentially novel genetic influences on systemic biomarker variability. The newly described associations will need to be replicated in other studies.
AB - Background: Systemic biomarkers provide insights into disease pathogenesis, diagnosis, and risk stratification. Many systemic biomarker concentrations are heritable phenotypes. Genome-wide association studies (GWAS) provide mechanisms to investigate the genetic contributions to biomarker variability unconstrained by current knowledge of physiological relations. Methods: We examined the association of Affymetrix 100K GeneChip single nucleotide polymorphisms (SNPs) to 22 systemic biomarker concentrations in 4 biological domains: inflammation/oxidative stress; natriuretic peptides; liver function; and vitamins. Related members of the Framingham Offspring cohort (n = 1012; mean age 59 ± 10 years, 51% women) had both phenotype and genotype data (minimum-maximum per phenotype n = 507-1008). We used Generalized Estimating Equations (GEE), Family Based Association Tests (FBAT) and variance components linkage to relate SNPs to multivariable-adjusted biomarker residuals. Autosomal SNPs (n = 70,987) meeting the following criteria were studied: minor allele frequency ≥ 10%, call rate ≥ 80% and Hardy-Weinberg equilibrium p ≥ 0.001. Results: With GEE, 58 SNPs had p < 10-6: the top SNPs were rs2494250 (p = 1.00*10-14) and rs4128725 (p = 3.68*10-12) for monocyte chemoattractant protein-1 (MCP1), and rs2794520 (p = 2.83*10-8) and rs2808629 (p = 3.19*10-8) for C-reactive protein (CRP) averaged from 3 examinations (over about 20 years). With FBAT, 11 SNPs had p < 10-6: the top SNPs were the same for MCP1 (rs4128725, p = 3.28*10-8, and rs2494250, p = 3.55*10-8), and also included B-type natriuretic peptide (rs437021, p = 1.01*10-6) and Vitamin K percent undercarboxylated osteocalcin (rs2052028, p = 1.07*10-6). The peak LOD (logarithm of the odds) scores were for MCP1 (4.38, chromosome 1) and CRP (3.28, chromosome 1; previously described) concentrations; of note the 1.5 support interval included the MCP1 and CRP SNPs reported above (GEE model). Previous candidate SNP associations with circulating CRP concentrations were replicated at p < 0.05; the SNPs rs2794520 and rs2808629 are in linkage disequilibrium with previously reported SNPs. GEE, FBAT and linkage results are posted at http://www.ncbi.nlm.nih.gov/projects/gap/ cgi-bin/study.cgi?id=phs000007. Conclusion: The Framingham GWAS represents a resource to describe potentially novel genetic influences on systemic biomarker variability. The newly described associations will need to be replicated in other studies.
UR - http://www.scopus.com/inward/record.url?scp=35748983219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35748983219&partnerID=8YFLogxK
U2 - 10.1186/1471-2350-8-S1-S11
DO - 10.1186/1471-2350-8-S1-S11
M3 - Article
C2 - 17903293
AN - SCOPUS:35748983219
SN - 1755-8794
VL - 8
JO - BMC Medical Genomics
JF - BMC Medical Genomics
IS - SUPPL. 1
M1 - S11
ER -