Family history aggregation unit-based tests to detect rare genetic variant associations with application to the Framingham Heart Study

Yanbing Wang, Han Chen, Gina M. Peloso, James B. Meigs, Alexa S. Beiser, Sudha Seshadri, Anita L. DeStefano, Josée Dupuis

Resultado de la investigación: Articlerevisión exhaustiva

1 Cita (Scopus)

Resumen

A challenge in standard genetic studies is maintaining good power to detect associations, especially for low prevalent diseases and rare variants. The traditional methods are most powerful when evaluating the association between variants in balanced study designs. Without accounting for family correlation and unbalanced case-control ratio, these analyses could result in inflated type I error. One cost-effective solution to increase statistical power is exploitation of available family history (FH) that contains valuable information about disease heritability. Here, we develop methods to address the aforementioned type I error issues while providing optimal power to analyze aggregates of rare variants by incorporating additional information from FH. With enhanced power in these methods exploiting FH and accounting for relatedness and unbalanced designs, we successfully detect genes with suggestive associations with Alzheimer disease, dementia, and type 2 diabetes by using the exome chip data from the Framingham Heart Study.

Idioma originalEnglish (US)
Páginas (desde-hasta)738-749
Número de páginas12
PublicaciónAmerican Journal of Human Genetics
Volumen109
N.º4
DOI
EstadoPublished - abr 7 2022

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

Huella

Profundice en los temas de investigación de 'Family history aggregation unit-based tests to detect rare genetic variant associations with application to the Framingham Heart Study'. En conjunto forman una huella única.

Citar esto