Enabling data analysis on high-throughput data in large data depository using web-based analysis platform - A case study on integrating QUEST with GenePattern in epigenetics research

Terry Camerlengo, Hatice Gulcin Ozer, Pearlly Yan, Jeffrey Parvin, Tim Huang, Kun Huang, Mingxiang Teng, Lang Li, Yunlong Liu, Francisco Perez, Tahsin Kurc

Producción científica: Conference contribution

Resumen

Enabling data analysis in large data depositories for high throughput experimental data such as gene microarrays and ChIP-seq is challenging. In this paper, we discuss three methods for integrating QUEST, a data depository for epigenetic experiments, with a web-based data analysis platform GenePattern. These methods are universal and can serve as an exemplary implementation resolving the dilemma facing many similar database systems in integrating data analysis tools.

Idioma originalEnglish (US)
Título de la publicación alojada2009 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009
Páginas392-395
Número de páginas4
DOI
EstadoPublished - 2009
Publicado de forma externa
Evento2009 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009 - Washington, D.C., United States
Duración: nov 1 2009nov 4 2009

Serie de la publicación

Nombre2009 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009

Other

Other2009 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009
País/TerritorioUnited States
CiudadWashington, D.C.
Período11/1/0911/4/09

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence
  • Health Informatics
  • Biomedical Engineering

Huella

Profundice en los temas de investigación de 'Enabling data analysis on high-throughput data in large data depository using web-based analysis platform - A case study on integrating QUEST with GenePattern in epigenetics research'. En conjunto forman una huella única.

Citar esto