TY - JOUR
T1 - Effect of estrous cycle on schizophrenia-like behaviors in MAM exposed rats
AU - Perez, Stephanie M.
AU - Donegan, Jennifer J.
AU - Lodge, Daniel J.
N1 - Publisher Copyright:
© 2019
PY - 2019/4/19
Y1 - 2019/4/19
N2 - Although there are clear sex differences in individuals with schizophrenia, preclinical research has historically favored the use of male rats for behavioral studies. The methylazoxymethanol acetate (MAM) model is a gestational disruption model of schizophrenia and has been reported to produce robust behavioral, neurophysiological and anatomical alterations in male rats; however, whether similar effects are observed in female rats is less well known. In this study, we characterize the behavioral, electrophysiological and molecular alterations induced by prenatal MAM administration in female rats while also examining the potential effects of the estrous cycle on schizophrenia-like behaviors. Specifically, MAM-treated female offspring demonstrated deficits in sensorimotor gating, latent inhibition, and social interaction, consistent with those observed in male animals. Interestingly, amphetamine-induced locomotor activity, latent inhibition, and social interaction were also affected by the estrous cycle. To examine the potential cellular mechanisms associated with these behavioral alterations, we analyzed hippocampal parvalbumin (PV) interneurons. Deficits in PV interneuron number and high-frequency gamma oscillations were disrupted in female MAM-treated rats regardless of the stage of the estrous cycle; however, alterations in PV protein expression were more prominent during metestrus/diestrus. Taken together, these data suggest that prenatal MAM exposure in female rats produces robust behavioral, molecular, and physiological deficits consistent with those observed in the male MAM model of schizophrenia. Moreover, our results also suggest that specific schizophrenia-like symptoms can also be influenced by the estrous cycle, and further emphasize the importance of sex as a biological variable when using preclinical models.
AB - Although there are clear sex differences in individuals with schizophrenia, preclinical research has historically favored the use of male rats for behavioral studies. The methylazoxymethanol acetate (MAM) model is a gestational disruption model of schizophrenia and has been reported to produce robust behavioral, neurophysiological and anatomical alterations in male rats; however, whether similar effects are observed in female rats is less well known. In this study, we characterize the behavioral, electrophysiological and molecular alterations induced by prenatal MAM administration in female rats while also examining the potential effects of the estrous cycle on schizophrenia-like behaviors. Specifically, MAM-treated female offspring demonstrated deficits in sensorimotor gating, latent inhibition, and social interaction, consistent with those observed in male animals. Interestingly, amphetamine-induced locomotor activity, latent inhibition, and social interaction were also affected by the estrous cycle. To examine the potential cellular mechanisms associated with these behavioral alterations, we analyzed hippocampal parvalbumin (PV) interneurons. Deficits in PV interneuron number and high-frequency gamma oscillations were disrupted in female MAM-treated rats regardless of the stage of the estrous cycle; however, alterations in PV protein expression were more prominent during metestrus/diestrus. Taken together, these data suggest that prenatal MAM exposure in female rats produces robust behavioral, molecular, and physiological deficits consistent with those observed in the male MAM model of schizophrenia. Moreover, our results also suggest that specific schizophrenia-like symptoms can also be influenced by the estrous cycle, and further emphasize the importance of sex as a biological variable when using preclinical models.
KW - Estrous cycle
KW - Hippocampus
KW - MAM
KW - Parvalbumin
KW - Schizophrenia
UR - http://www.scopus.com/inward/record.url?scp=85060207606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060207606&partnerID=8YFLogxK
U2 - 10.1016/j.bbr.2019.01.031
DO - 10.1016/j.bbr.2019.01.031
M3 - Article
C2 - 30660776
AN - SCOPUS:85060207606
SN - 0166-4328
VL - 362
SP - 258
EP - 265
JO - Behavioural Brain Research
JF - Behavioural Brain Research
ER -