TY - JOUR
T1 - Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects
AU - Jensen, Jørgen
AU - Tantiwong, Puntip
AU - Stuenæs, Jorid T.
AU - Molina-Carrion, Marjorie
AU - de Fronzo, Ralph A.
AU - Sakamoto, Kei
AU - Musi, Nicolas
PY - 2012/7/1
Y1 - 2012/7/1
N2 - Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of V̇O 2max). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K m for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser 641, Ser 645, and Ser 645,649,653,657), and phosphorylation of these sites remained decreased after 3.5 h; Ser 7 phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K m for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.
AB - Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of V̇O 2max). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K m for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser 641, Ser 645, and Ser 645,649,653,657), and phosphorylation of these sites remained decreased after 3.5 h; Ser 7 phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K m for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.
KW - Insulin resistance
UR - http://www.scopus.com/inward/record.url?scp=84863714743&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863714743&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00658.2011
DO - 10.1152/ajpendo.00658.2011
M3 - Article
C2 - 22510711
AN - SCOPUS:84863714743
SN - 0193-1849
VL - 303
SP - E82-E89
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 1
ER -