Diagnostic cost reduction using artificial neural networks: The case of pulmonary embolism

Steven Walczak, Bradley B. Brimhall, Jerry B. Lefkowitz

Producción científica: Chapter

Resumen

Patients face a multitude of diseases, trauma, and related medical problems that are difficult and costly to diagnose with respect to direct costs, including pulmonary embolism (PE). Advanced decision-making tools such as artificial neural networks (ANNs) improve diagnostic capabilities for these problematic medical conditions. The research in this chapter develops a backpropagation trained ANN diagnostic model to predict the occurrence of PE. Laboratory database values for 292 patients who were determined to be at risk for a PE, with 15% suffering a confirmed PE, are collected and used to evaluate various ANN models' performance. Results indicate that using ANN diagnostic models enables the leveraging of knowledge gained from standard clinical laboratory tests, significantly improving both overall positive predictive and negative predictive performance.

Idioma originalEnglish (US)
Título de la publicación alojadaHealthcare Information Systems and Informatics
Subtítulo de la publicación alojadaResearch and Practices
EditorialIGI Global
Páginas108-130
Número de páginas23
ISBN (versión impresa)9781599046907
DOI
EstadoPublished - 2008
Publicado de forma externa

ASJC Scopus subject areas

  • General Health Professions

Huella

Profundice en los temas de investigación de 'Diagnostic cost reduction using artificial neural networks: The case of pulmonary embolism'. En conjunto forman una huella única.

Citar esto