Data Mining Techniques for Prediction of Type 2 Diabetes leading to Cardiovascular Disease

Md Shafiqul Islam, Samir Brahim Belhaouari, Muhammad Abdul-Ghani, Marwa K. Qaraqe

Producción científica: Conference contribution

Resumen

Prevention or late onset of a disease progression can be accomplished if a data-mining technique can identify a person who is at a greater risk of developing the disease in a later stage. This study aimed to extract and find the biomarkers responsible for the progression of diabetes mellitus (DM) leading to cardiovascular disease (CVD), followed by applying data-driven techniques for type 2 diabetes (T2D) and CVD prediction in advance. The proposed approach comprises novel feature extraction and selection, applying ensembling and stacking of three different data mining techniques, namely, support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGB) models. The developed framework has been evaluated using oral glucose tolerant test (OGTT) data sourced from the San Antonio Heart Study. The model achieved 92.54% prediction accuracy in differentiating healthy patients from those who developed T2D leading to CVD.

Idioma originalEnglish (US)
Título de la publicación alojada7th IEEE World Forum on Internet of Things, WF-IoT 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas321-325
Número de páginas5
ISBN (versión digital)9781665444316
DOI
EstadoPublished - jun 14 2021
Evento7th IEEE World Forum on Internet of Things, WF-IoT 2021 - New Orleans, United States
Duración: jun 14 2021jul 31 2021

Serie de la publicación

Nombre7th IEEE World Forum on Internet of Things, WF-IoT 2021

Conference

Conference7th IEEE World Forum on Internet of Things, WF-IoT 2021
País/TerritorioUnited States
CiudadNew Orleans
Período6/14/217/31/21

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Information Systems and Management

Huella

Profundice en los temas de investigación de 'Data Mining Techniques for Prediction of Type 2 Diabetes leading to Cardiovascular Disease'. En conjunto forman una huella única.

Citar esto