Covariance shrinkage for dynamic functional connectivity

Nicolas Honnorat, Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V. Sullivan, Kilian Pohl

Producción científica: Conference contribution

1 Cita (Scopus)

Resumen

The tracking of dynamic functional connectivity (dFC) states in resting-state fMRI scans aims to reveal how the brain sequentially processes stimuli and thoughts. Despite the recent advances in statistical methods, estimating the high dimensional dFC states from a small number of available time points remains a challenge. This paper shows that the challenge is reduced by linear covariance shrinkage, a statistical method used for the estimation of large covariance matrices from small number of samples. We present a computationally efficient formulation of our approach that scales dFC analysis up to full resolution resting-state fMRI scans. Experiments on synthetic data demonstrate that our approach produces dFC estimates that are closer to the ground-truth than state-of-the-art estimation approaches. When comparing methods on the rs-fMRI scans of 162 subjects, we found that our approach is better at extracting functional networks and capturing differences in rs-fMRI acquisition and diagnosis.

Idioma originalEnglish (US)
Título de la publicación alojadaConnectomics in NeuroImaging - 3rd International Workshop, CNI 2019, Held in Conjunction with MICCAI 2019, Proceedings
EditoresMarkus D. Schirmer, Ai Wern Chung, Archana Venkataraman, Islem Rekik, Minjeong Kim
EditorialSpringer
Páginas32-41
Número de páginas10
ISBN (versión impresa)9783030323905
DOI
EstadoPublished - 2019
Publicado de forma externa
Evento3rd International Workshop on Connectomics in NeuroImaging, CNI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duración: oct 13 2019oct 13 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11848 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conference

Conference3rd International Workshop on Connectomics in NeuroImaging, CNI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2019
País/TerritorioChina
CiudadShenzhen
Período10/13/1910/13/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Huella

Profundice en los temas de investigación de 'Covariance shrinkage for dynamic functional connectivity'. En conjunto forman una huella única.

Citar esto