Concerted regulation and molecular evolution of the duplicated SNRPB'/B and SNRPN loci

Todd A. Gray, Megan J. Smithwick, Melanie A. Schaldach, Diana L. Martone, Jennifer A. Marshall Graves, John R. McCarrey, Robert D. Nicholls

Resultado de la investigación: Articlerevisión exhaustiva

30 Citas (Scopus)


The human small nuclear ribonucleoprotein SNRPB'/B gene is alternatively spliced to produce the SmB or SmB' spliceosomal core proteins. An ancestral duplication gave rise to the closely related SNRPN paralog whose protein product, SmN, replaces SmB'/B in brain. However, the precise evolutionary and functional relationship between these loci has not been clear. Genomic, cDNA and protein analyses presented here in chicken, two marsupials (South American opossum and tammar wallaby), and hedgehog, suggest that the vertebrate ancestral locus produced the SmB' isoform. Interestingly, three eutherians exhibit radically distinct splice choice expression profiles, producing either exclusively SmB in mouse, both SmB and SmB' in human, or exclusively SmB' in hedgehog. The human SNRPB'/B locus is biallelically unmethylated, unlike the imprinted SNRPN locus which is unmethylated only on the expressed paternal allele. Western analysis demonstrates that a compensatory feedback loop dramatically upregulates SmB'/B levels in response to the loss of SmN in Prader-Willi syndrome brain tissue, potentially reducing the phenotypic severity of this syndrome. These findings imply that these two genes encoding small nuclear ribonucleoprotein components are subject to dosage compensation. Therefore, a more global regulatory network may govern the maintenance of stoichiometric levels of spliceosomal components and may constrain their evolution.

Idioma originalEnglish (US)
Páginas (desde-hasta)4577-4584
Número de páginas8
PublicaciónNucleic acids research
EstadoPublished - dic 1 1999
Publicado de forma externa

ASJC Scopus subject areas

  • Genetics


Profundice en los temas de investigación de 'Concerted regulation and molecular evolution of the duplicated SNRPB'/B and SNRPN loci'. En conjunto forman una huella única.

Citar esto