Collaborative Clustering Based on Adaptive Laplace Modeling for Neuroimaging Data Analysis

Hangfan Liu, Karl Li, Jon B. Toledo, Mohamad Habes

Producción científica: Conference contribution

Resumen

Aging subjects with neurodegenerative conditions have multiple contributors and pathology progression patterns that result in heterogeneous disease biology and different disease phenotypes. Clinical data play a crucial role in disentangling such disease heterogeneity, but they are usually by noise, which can result in errors in clustering leading to spurious non-clinically relevant clusters. A limitation of conventional neuroimaging clustering methods is neglecting the potential bias caused by noise. To remove noise, we introduce adaptive regularization based on coefficient distribution modeling in transform domain. Different from traditional sparsity techniques that assume zero expectation of the coefficients, we use the data of interest to form the Laplace distributions so that they can depict the statistical characteristics more accurately. Furthermore, we use feature clusters to provide weak supervision for enhanced clustering of subjects. To this end, we employ nonnegative matrix tri-factorization to collaboratively cluster subjects and features. Experimental results on synthetic data and the real-life clinical dataset PRVENT-AD demonstrate superior effectiveness of the proposed approach.

Idioma originalEnglish (US)
Título de la publicación alojadaIEEE International Symposium on Circuits and Systems, ISCAS 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1630-1634
Número de páginas5
ISBN (versión digital)9781665484855
DOI
EstadoPublished - 2022
Evento2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, United States
Duración: may 27 2022jun 1 2022

Serie de la publicación

NombreProceedings - IEEE International Symposium on Circuits and Systems
Volumen2022-May
ISSN (versión impresa)0271-4310

Conference

Conference2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022
País/TerritorioUnited States
CiudadAustin
Período5/27/226/1/22

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Huella

Profundice en los temas de investigación de 'Collaborative Clustering Based on Adaptive Laplace Modeling for Neuroimaging Data Analysis'. En conjunto forman una huella única.

Citar esto