Clustering analysis for gene expression data

Yidong Chen, Olga Ermolaeva, Michael Bittner, Paul Meltzer, Jeffrey Trent, Edward R. Dougherty, Sinan Batman

Producción científica: Conference contribution

Resumen

The recent development of cDNA microarray allows ready access to large amount gene expression patterns for many genetic materials. Gene expression of tissue samples can be quantitatively analyzed by hybridizing fluor-tagged mRNA to targets on a cDNA microarray. Ratios of average expression level arising from cohybridized normal and pathological samples are extracted via image segmentation, thus the gene expression pattern are obtained. The gene expression in a given biological process may provide a fingerprint of the sample development, or response to certain treatment. We propose a K-mean based algorithm in which gene expression levels fluctuate in parallel will be clustered together. The resulting cluster suggests some functional relationships between genes, and some known genes belongs to a unique functional classes shall provide indication for unknown genes in the same clusters.

Idioma originalEnglish (US)
Título de la publicación alojadaProceedings of SPIE - The International Society for Optical Engineering
EditorialSociety of Photo-Optical Instrumentation Engineers
Páginas422-428
Número de páginas7
ISBN (versión impresa)0819430722
EstadoPublished - 1999
Publicado de forma externa
EventoProceedings of the 1999 Advances in Fluorescence Sensing Technology - San Jose, CA, USA
Duración: ene 24 1999ene 27 1999

Serie de la publicación

NombreProceedings of SPIE - The International Society for Optical Engineering
Volumen3602
ISSN (versión impresa)0277-786X

Other

OtherProceedings of the 1999 Advances in Fluorescence Sensing Technology
CiudadSan Jose, CA, USA
Período1/24/991/27/99

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Huella

Profundice en los temas de investigación de 'Clustering analysis for gene expression data'. En conjunto forman una huella única.

Citar esto