TY - JOUR
T1 - Cells cultured from the growing tip of red deer antler express alkaline phosphatase and proliferate in response to insulin-like growth factor-I
AU - Price, J. S.
AU - Oyajobi, B. O.
AU - Oreffo, R. O.C.
AU - Russell, R. G.G.
PY - 1994
Y1 - 1994
N2 - Deer antler growth provides a unique natural model of rapid and complete bone regeneration. In this study, the distal antler tips of male red deer (Cervus elaphus) were collected post-mortem during the annual growth period (April-August), and an in vitro system established for the culture of cells from three regions; the inner layer of the perichondrium, the reserve mesenchyme and the cartilage zone. Alkaline phosphatase (ALP) expression by cultured cells, as demonstrated by enzyme histochemistry and biochemical assay, reflected the stage of cellular differentiation. ALP activity was highest in cells cultured from the hypertrophic cartilage region (3.6 ± 0.2 μmol/μg cell protein/minute), and lowest in undifferentiated mesenchymal cells (0.3 ± 0.01 μmol/μg cell protein/minute). ALP expression was lost with passage in culture. Levels of ALP activity in cultured cells correlated with the pattern and extent of enzyme expression in tissue sections as demonstrated by histochemical staining. Insulin-like growth factor (IGF)-I (10-9M-10-7M) was found to be mitogenic for cultured cells from all three zones as shown by increased incorporation of [3H]thymidine into DNA. These results demonstrate that cells from three different regions of the antler tip can be maintained in culture, and that antler cells share certain phenotypic characteristics of growth plate chondrocytes. These data provide further evidence of a role for IGF-1 in the regulation of antler growth. Antler regrowth is a potentially useful model for the study of the factors that regulate bone formation.
AB - Deer antler growth provides a unique natural model of rapid and complete bone regeneration. In this study, the distal antler tips of male red deer (Cervus elaphus) were collected post-mortem during the annual growth period (April-August), and an in vitro system established for the culture of cells from three regions; the inner layer of the perichondrium, the reserve mesenchyme and the cartilage zone. Alkaline phosphatase (ALP) expression by cultured cells, as demonstrated by enzyme histochemistry and biochemical assay, reflected the stage of cellular differentiation. ALP activity was highest in cells cultured from the hypertrophic cartilage region (3.6 ± 0.2 μmol/μg cell protein/minute), and lowest in undifferentiated mesenchymal cells (0.3 ± 0.01 μmol/μg cell protein/minute). ALP expression was lost with passage in culture. Levels of ALP activity in cultured cells correlated with the pattern and extent of enzyme expression in tissue sections as demonstrated by histochemical staining. Insulin-like growth factor (IGF)-I (10-9M-10-7M) was found to be mitogenic for cultured cells from all three zones as shown by increased incorporation of [3H]thymidine into DNA. These results demonstrate that cells from three different regions of the antler tip can be maintained in culture, and that antler cells share certain phenotypic characteristics of growth plate chondrocytes. These data provide further evidence of a role for IGF-1 in the regulation of antler growth. Antler regrowth is a potentially useful model for the study of the factors that regulate bone formation.
UR - http://www.scopus.com/inward/record.url?scp=0028075784&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028075784&partnerID=8YFLogxK
U2 - 10.1677/joe.0.143R009
DO - 10.1677/joe.0.143R009
M3 - Article
C2 - 7829985
AN - SCOPUS:0028075784
SN - 0022-0795
VL - 143
SP - R9-R16
JO - Journal of Endocrinology
JF - Journal of Endocrinology
IS - 2
ER -