Cancer cell segmentation for cellularity prediction via a weakly labeled/strongly labeled hybrid convolutional neural network

David R. Chambers, Bradley B. Brimhall, Donald R. Poole, Edward A. Medina

Producción científica: Conference contribution

1 Cita (Scopus)

Resumen

In our work, we present an approach to regressing breast cancer cellularity in patches extracted from Whole Slide Imagery (WSI) on Hematoxylin and Eosin (H&E) stains using a fully-convolutional neural network which is trained with two heads: one which computes a global average pool for weakly-labeled data (data with a cellularity score of 0- 1.0) and another which enforces pixel-wise activations for strongly-labeled (segmentation) data. Our method was the top-performing algorithm of all submissions to the BreastPathQ challenge, achieving a prediction probability of 0.941.

Idioma originalEnglish (US)
Título de la publicación alojadaMedical Imaging 2022
Subtítulo de la publicación alojadaDigital and Computational Pathology
EditoresJohn E. Tomaszewski, Aaron D. Ward, Richard M. Levenson
EditorialSPIE
ISBN (versión digital)9781510649538
DOI
EstadoPublished - 2022
EventoMedical Imaging 2022: Digital and Computational Pathology - Virtual, Online
Duración: mar 21 2022mar 27 2022

Serie de la publicación

NombreProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volumen12039
ISSN (versión impresa)1605-7422

Conference

ConferenceMedical Imaging 2022: Digital and Computational Pathology
CiudadVirtual, Online
Período3/21/223/27/22

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Huella

Profundice en los temas de investigación de 'Cancer cell segmentation for cellularity prediction via a weakly labeled/strongly labeled hybrid convolutional neural network'. En conjunto forman una huella única.

Citar esto