TY - JOUR
T1 - Building and analyzing protein interactome networks by cross-species comparisons
AU - Wiles, Amy M.
AU - Doderer, Mark
AU - Ruan, Jianhua
AU - Gu, Ting Ting
AU - Ravi, Dashnamoorthy
AU - Blackman, Barron
AU - Bishop, Alexander J.R.
N1 - Funding Information:
The authors would like to thank Don McEwen for providing whole fly RNA, David Rodriguez for website design, and Shannon Dick for discussing statistical analysis. AJRB is supported by NIEHS K22 5K22ES012264. JR is supported by NIGMS SC3GM086305.
PY - 2010/3/30
Y1 - 2010/3/30
N2 - Background: A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species.Results: The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen) and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced.Conclusions: Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website http://www.interologfinder.org provides research biologists intuitive access to this data.
AB - Background: A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species.Results: The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen) and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced.Conclusions: Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website http://www.interologfinder.org provides research biologists intuitive access to this data.
UR - http://www.scopus.com/inward/record.url?scp=77950444122&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950444122&partnerID=8YFLogxK
U2 - 10.1186/1752-0509-4-36
DO - 10.1186/1752-0509-4-36
M3 - Article
C2 - 20353594
AN - SCOPUS:77950444122
SN - 1752-0509
VL - 4
JO - BMC Systems Biology
JF - BMC Systems Biology
M1 - 36
ER -