TY - JOUR
T1 - Buccal bone formation after flapless extraction
T2 - A randomized, controlled clinical trial comparing recombinant human bone morphogenetic protein 2/absorbable collagen carrier and collagen sponge alone
AU - Coomes, Angela M.
AU - Mealey, Brian L.
AU - Huynh-Ba, Guy
AU - Barboza-Arguello, Concepcion
AU - Moore, William S.
AU - Cochran, David L.
PY - 2014/4
Y1 - 2014/4
N2 - Flapless extraction of teeth allows for undisturbed preservation of the nearby periosteum and a source of osteoprogenitor cells. Recombinant human bone morphogenetic protein 2 (rhBMP-2) has been used for different bone augmentation purposes with great osteoinductive capacity. The aim of this study is to compare the bone regenerative ability of rhBMP-2 on an absorbable collagen sponge (ACS) carrier to a collagen sponge (CS) alone in extraction sites with ≥50% buccal dehiscence. Methods: Thirty-nine patients requiring extraction of a hopeless tooth with ≥50% buccal dehiscence were enrolled. After flapless extraction and randomization, either rhBMP-2/ACS carrier or CS alone was placed in the extraction site. After extraction, a baseline cone beam computed tomography (CBCT) scan was obtained of the site, and a similar scan was obtained 5 months postoperatively. Medical imaging and viewing software were used to compare the baseline and 5-month postoperative images of the study site and assess ridge width measurements, vertical height changes, and buccal plate regeneration. Results: Radiographically, CBCT analysis showed that with ≥50% of buccal bone destruction, rhBMP- 2/ACS was able to regenerate a portion of the lost buccal plate, maintain theoretical ridge dimensions, and allow for implant placement 5 months after extraction. The test group performed significantly (P <0.05) better in regard to clinical buccal plate regeneration (4.75 versus 1.85 mm), clinical ridge width at 5 months (6.0 versus 4.62 mm), and radiographic ridge width at 3 mm from the alveolar crest (6.17 versus 4.48 mm) after molar exclusion. There was also significantly (P <0.05) less remaining buccal dehiscence, both clinically (6.81 versus 10.0 mm) and radiographically (3.42 versus 5.16 mm), at 5 months in the test group. Significantly (P <0.05) more implants were placed in the test group without the need for additional augmentation. The mean loss in vertical ridge height (lingual/palatal) was less in the test sites but was not significantly (P = 0.514) different between the test and control groups (0.39 versus 0.64 mm). Conclusions: rhBMP-2/ACS compared to CS alone used in flapless extraction sites with a buccal dehiscence is able to regenerate lost buccal plate, maintain theoretical ridge dimensions, and allow for implant placement 5 months later. J Periodontol 2014;85:525-535.
AB - Flapless extraction of teeth allows for undisturbed preservation of the nearby periosteum and a source of osteoprogenitor cells. Recombinant human bone morphogenetic protein 2 (rhBMP-2) has been used for different bone augmentation purposes with great osteoinductive capacity. The aim of this study is to compare the bone regenerative ability of rhBMP-2 on an absorbable collagen sponge (ACS) carrier to a collagen sponge (CS) alone in extraction sites with ≥50% buccal dehiscence. Methods: Thirty-nine patients requiring extraction of a hopeless tooth with ≥50% buccal dehiscence were enrolled. After flapless extraction and randomization, either rhBMP-2/ACS carrier or CS alone was placed in the extraction site. After extraction, a baseline cone beam computed tomography (CBCT) scan was obtained of the site, and a similar scan was obtained 5 months postoperatively. Medical imaging and viewing software were used to compare the baseline and 5-month postoperative images of the study site and assess ridge width measurements, vertical height changes, and buccal plate regeneration. Results: Radiographically, CBCT analysis showed that with ≥50% of buccal bone destruction, rhBMP- 2/ACS was able to regenerate a portion of the lost buccal plate, maintain theoretical ridge dimensions, and allow for implant placement 5 months after extraction. The test group performed significantly (P <0.05) better in regard to clinical buccal plate regeneration (4.75 versus 1.85 mm), clinical ridge width at 5 months (6.0 versus 4.62 mm), and radiographic ridge width at 3 mm from the alveolar crest (6.17 versus 4.48 mm) after molar exclusion. There was also significantly (P <0.05) less remaining buccal dehiscence, both clinically (6.81 versus 10.0 mm) and radiographically (3.42 versus 5.16 mm), at 5 months in the test group. Significantly (P <0.05) more implants were placed in the test group without the need for additional augmentation. The mean loss in vertical ridge height (lingual/palatal) was less in the test sites but was not significantly (P = 0.514) different between the test and control groups (0.39 versus 0.64 mm). Conclusions: rhBMP-2/ACS compared to CS alone used in flapless extraction sites with a buccal dehiscence is able to regenerate lost buccal plate, maintain theoretical ridge dimensions, and allow for implant placement 5 months later. J Periodontol 2014;85:525-535.
KW - Bone morphogenetic proteins
KW - Cone beam computed tomography
KW - Dental implant
KW - Intercellular signaling peptides and proteins
KW - Regeneration
KW - Tooth extraction
UR - http://www.scopus.com/inward/record.url?scp=84897437529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897437529&partnerID=8YFLogxK
U2 - 10.1902/jop.2013.130207
DO - 10.1902/jop.2013.130207
M3 - Article
C2 - 23826643
AN - SCOPUS:84897437529
SN - 0022-3492
VL - 85
SP - 525
EP - 535
JO - Journal of periodontology
JF - Journal of periodontology
IS - 4
ER -