Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface

S. J. Ferguson, N. Broggini, M. Wieland, M. De Wild, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran, D. Buser

Producción científica: Articlerevisión exhaustiva

174 Citas (Scopus)

Resumen

The functional capacity of osseointegrated dental implants to bear load is largely dependent on the quality of the interface between the bone and implant. Sandblasted and acid-etched (SLA) surfaces have been previously shown to enhance bone apposition. In this study, the SLA has been compared with a chemically modified SLA (modSLA) surface. The increased wettability of the modSLA surface in a protein solution was verified by dynamic contact angle analysis. Using a well-established animal model with a splitmouth experimental design, implant removal torque testing was performed to determine the biomechanical properties of the bone-implant interface. All implants had an identical cylindrical shape with a standard thread configuration. Removal torque testing was performed after 2, 4, and 8 weeks of bone healing (n = 9 animals per healing period, three implants per surface type per animal) to evaluate the interfacial shear strength of each surface type. Results showed that the modSLA surface was more effective in enhancing the interfacial shear strength of implants in comparison with the conventional SLA surface during early stages of bone healing. Removal torque values of the modSLA-surfaced implants were 8-21% higher than those of the SLA implants (p = 0.003). The mean removal torque values for the modSLA implants were 1.485 N m at 2 weeks, 1.709 N m at 4 weeks, and 1.345 N m at 8 weeks; and correspondingly, 1.231 N m, 1.585 N m, and 1.143 N m for the SLA implants. The bone-implant interfacial stiffness calculated from the torque-rotation curve was on average 9-14% higher for the modSLA implants when compared with the SLA implants (p = 0.038). It can be concluded that the modSLA surface achieves a better bone anchorage during early stages of bone healing than the SLA surface; chemical modification of the standard SLA surface likely enhances bone apposition and this has a beneficial effect on the interfacial shear strength.

Idioma originalEnglish (US)
Páginas (desde-hasta)291-297
Número de páginas7
PublicaciónJournal of Biomedical Materials Research - Part A
Volumen78
N.º2
DOI
EstadoPublished - ago 2006

ASJC Scopus subject areas

  • Ceramics and Composites
  • Metals and Alloys
  • Biomedical Engineering
  • Biomaterials

Huella

Profundice en los temas de investigación de 'Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface'. En conjunto forman una huella única.

Citar esto