Big Data for Tiny Patients: A Precision Medicine Approach to Bronchopulmonary Dysplasia

Zoya Cheema, Przemko Kwinta, Axel Moreira, Miriam Tovar, Shamimunisa B. Mustafa

Producción científica: Articlerevisión exhaustiva

1 Cita (Scopus)

Resumen

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease of extreme prematurity. Despite more than 50 years of research, current treatments are inef-fective, and clinicians are largely unable to accurately predict which neonates the condi-tion will develop in. A deeper understanding of the molecular mechanisms underlying the characteristic arrest in lung development are warranted. Integrating high-fidelity technology from precision medicine approaches may fill this gap and provide the tools necessary to identify biomarkers and targetable pathways. In this review, we describe insights garnered from current studies using omics for BPD prediction and stratification. We conclude by describing novel programs that will integrate multi-omics in efforts to better understand and treat the pathogenesis of BPD. [Pediatr Ann. 2022;51(10):e396– e404.].

Idioma originalEnglish (US)
Páginas (desde-hasta)e396-e404
PublicaciónPediatric annals
Volumen51
N.º10
DOI
EstadoPublished - oct 2022

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health

Huella

Profundice en los temas de investigación de 'Big Data for Tiny Patients: A Precision Medicine Approach to Bronchopulmonary Dysplasia'. En conjunto forman una huella única.

Citar esto