An iterated conditional modes solution for sparse Bayesian factor modeling of transcriptional regulatory networks

Jia Meng, Jianqiu Zhang, Yidong Chen, Yufei Huang

    Producción científica: Conference contribution

    Resumen

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) coupled with its ICM solution is proposed. BSCRFM models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF regulated genes and it admits prior knowledge from existing database regarding TF regulated target genes. An efficient Iterated Conditional Modes (ICM) algorithm is developed, and a maximum a posterior (MAP) solution is calculated from multiple ICM results to avoid the local maximum problem, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can then be obtained. The proposed model's ICM algorithm and MAP solution are evaluated on the simulated systems and results demonstrated the validity and effectiveness of the proposed approach. The proposed model is also applied to the breast cancer microarray data and a TF regulated network is obtained.

    Idioma originalEnglish (US)
    Título de la publicación alojadaProceedings - 2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010
    Páginas335-340
    Número de páginas6
    DOI
    EstadoPublished - 2010
    Evento2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010 - Hong Kong, China
    Duración: dic 18 2010dic 21 2010

    Serie de la publicación

    NombreProceedings - 2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010

    Other

    Other2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010
    País/TerritorioChina
    CiudadHong Kong
    Período12/18/1012/21/10

    ASJC Scopus subject areas

    • Biomedical Engineering
    • Health Informatics

    Huella

    Profundice en los temas de investigación de 'An iterated conditional modes solution for sparse Bayesian factor modeling of transcriptional regulatory networks'. En conjunto forman una huella única.

    Citar esto