A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury

Jean Chrisostome Bopassa, Mansoureh Eghbali, Ligia Toro, Enrico Stefani

Producción científica: Articlerevisión exhaustiva

160 Citas (Scopus)

Resumen

Several studies have recently demonstrated that G protein-coupled receptor 30 (GPER) can directly bind to estrogen and mediate its action. We investigated the role and the mechanism of estrogen-induced cardioprotection after ischemia-reperfusion using a specific GPER agonist G1. Isolated hearts from male mice were perfused using Langendorff technique with oxygenated (95% O 2 and 5% CO2) Krebs Henseleit buffer (control), with G1 (1 μM), and G1 (1 μM) together with extracellular signal-regulated kinase (Erk) inhibitor PD-98059 (5μM). After 20 min of perfusion, hearts were subjected to 20 min global normothermic (37°C) ischemia followed by 40 min reperfusion. Cardiac function was measured, and myocardial necrosis was evaluated by triphenyltetrazolium chloride staining at the end of the reperfusion. Mitochondria were isolated after 10 min of reperfusion to assess the Ca2+ load required to induce mitochondria permeability transition pore (mPTP) opening. G1-treated hearts developed better functional recovery with higher rate pressure product (RPP, 6140 ± 264 vs. 2,640 ± 334 beats·mmHg-1·min-1, P < 0.05). The infarct size decreased significantly in G1-treated hearts (21 ± 2 vs. 46 ± 3%, P < 0.001), and the Ca2+ load required to induce mPTP opening increased (2.4 ± 0.06 vs. 1.6 ± 0.11 μM/mg mitochondrial protein, P < 0.05) compared with the controls. The protective effect of G1 was abolished in the presence of PD-98059 [RPP: 4,120 ± 46 beats·mmHg-1·min-1, infarct size: 53 ± 2%, and Ca2+ retention capacity: 1.4 ± 0.11 μM/mg mitochondrial protein (P < 0.05)]. These results suggest that GPER activation provides a cardioprotective effect after ischemia-reperfusion by inhibiting the mPTP opening, and this effect is mediated by the Erk pathway.

Idioma originalEnglish (US)
Páginas (desde-hasta)H16-H23
PublicaciónAmerican Journal of Physiology - Heart and Circulatory Physiology
Volumen298
N.º1
DOI
EstadoPublished - ene 2010
Publicado de forma externa

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)
  • Physiology

Huella

Profundice en los temas de investigación de 'A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury'. En conjunto forman una huella única.

Citar esto