A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure

ISTAGING Consortium, Baltimore Longitudinal Study of Aging (BLSA), Alzheimer’S Disease Neuroimaging Initiative (Adni)

Producción científica: Articlerevisión exhaustiva

57 Citas (Scopus)

Resumen

Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity contrasted against normal brain structure, to identify disease subtypes through neuroimaging signatures. When applied to regional volumes derived from T1-weighted MRI (two studies; 2,832 participants; 8,146 scans) including cognitively normal individuals and those with cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neurodegeneration. Applying this framework to longitudinal data revealed two distinct progression pathways. Measures of expression of these patterns predicted the pathway and rate of future neurodegeneration. Pattern expression offered complementary performance to amyloid/tau in predicting clinical progression. These deep-learning derived biomarkers offer potential for precision diagnostics and targeted clinical trial recruitment.

Idioma originalEnglish (US)
Número de artículo7065
PublicaciónNature communications
Volumen12
N.º1
DOI
EstadoPublished - dic 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Huella

Profundice en los temas de investigación de 'A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure'. En conjunto forman una huella única.

Citar esto