A comprehensive study of a svm-based mirna target prediction algorithm

Hui Liu, Dong Yue, Yidong Chen, Yufei Huang

    Producción científica: Conference contribution

    Resumen

    MicroRNAs are single-stranded non-coding RNAs that play important regulatory roles in many biological processes and diseases. Identifying miRNA regulatory targets is paramount in elucidating its function. We carried out a comprehensive study of a new SYM-based target prediction algorithm called SYMicrO in this paper. The training data set is carefully derived from the most up-to-date collection of verified target s and multiple microarray data sets. Several varieties of feature design and selection schemes are investigated. The prediction results are compared with most of the existing algorithms, which show improved sensitivity and specificity of this two-stage SYM algorithm.

    Idioma originalEnglish (US)
    Título de la publicación alojada2009 IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS 2009
    DOI
    EstadoPublished - 2009
    Evento2009 IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS 2009 - Minneapolis, MN, United States
    Duración: may 17 2009may 21 2009

    Serie de la publicación

    Nombre2009 IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS 2009

    Other

    Other2009 IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS 2009
    País/TerritorioUnited States
    CiudadMinneapolis, MN
    Período5/17/095/21/09

    ASJC Scopus subject areas

    • Molecular Biology
    • Computational Theory and Mathematics
    • Computer Vision and Pattern Recognition
    • Biomedical Engineering

    Huella

    Profundice en los temas de investigación de 'A comprehensive study of a svm-based mirna target prediction algorithm'. En conjunto forman una huella única.

    Citar esto