TY - JOUR
T1 - A cis-acting region regulates oxidized lipid-mediated induction of the human heme oxygenase-1 gene in endothelial cells
AU - Hill-Kapturczak, Nathalie
AU - Voakes, Christy
AU - Garcia, Jairo
AU - Visner, Gary
AU - Nick, Harry S.
AU - Agarwal, Anupam
PY - 2003/8/1
Y1 - 2003/8/1
N2 - Objective - Several proatherogenic agents including oxidized LDL and its major component, 13-hydroperoxyoctadecadienoic acid (13-HPODE), upregulate heme oxygenase-1 (HO-1). Our previous studies have demonstrated that 13-HPODE-mediated HO-1 induction occurs via transcriptional mechanisms. The purpose of this study was to evaluate the molecular regulation and identify the signaling pathways involved in 13-HPODE-mediated HO-1 induction in human aortic endothelial cells. Methods and Results - The half-life of HO-1 mRNA after stimulation with 13-HPODE was ≈1.8 hours. Antioxidants such as N-acetylcysteine, iron chelation with deferoxamine mesylate, and protein kinase C inhibition with Gö6976 blocked HO-1 induction. Using promoter constructs up to 9.1 kb, no significant reporter activity was observed in response to 13-HPODE. A 13-HPODE-inducible DNase I hypersensitive site was identified that maps to a region ≈10 to 11 kb from the transcription start site of the human HO-1 gene. Based on the DNase I analysis, a -11.6-kb human HO-1 promoter construct was generated and elicited a 2.5-fold increase in reporter activity, indicating that 13-HPODE-mediated human HO-1 induction requires, at least in part, sequences that reside between 9.1 and 11.6 kb of the human HO-1 promoter. Conclusions - Elucidation of the molecular mechanisms which control HO-1 gene expression will allow us to develop therapeutic strategies to enhance the cytoprotective potential of HO-1 in atherosclerosis.
AB - Objective - Several proatherogenic agents including oxidized LDL and its major component, 13-hydroperoxyoctadecadienoic acid (13-HPODE), upregulate heme oxygenase-1 (HO-1). Our previous studies have demonstrated that 13-HPODE-mediated HO-1 induction occurs via transcriptional mechanisms. The purpose of this study was to evaluate the molecular regulation and identify the signaling pathways involved in 13-HPODE-mediated HO-1 induction in human aortic endothelial cells. Methods and Results - The half-life of HO-1 mRNA after stimulation with 13-HPODE was ≈1.8 hours. Antioxidants such as N-acetylcysteine, iron chelation with deferoxamine mesylate, and protein kinase C inhibition with Gö6976 blocked HO-1 induction. Using promoter constructs up to 9.1 kb, no significant reporter activity was observed in response to 13-HPODE. A 13-HPODE-inducible DNase I hypersensitive site was identified that maps to a region ≈10 to 11 kb from the transcription start site of the human HO-1 gene. Based on the DNase I analysis, a -11.6-kb human HO-1 promoter construct was generated and elicited a 2.5-fold increase in reporter activity, indicating that 13-HPODE-mediated human HO-1 induction requires, at least in part, sequences that reside between 9.1 and 11.6 kb of the human HO-1 promoter. Conclusions - Elucidation of the molecular mechanisms which control HO-1 gene expression will allow us to develop therapeutic strategies to enhance the cytoprotective potential of HO-1 in atherosclerosis.
KW - Atherosclerosis
KW - Chromatin structure
KW - Gene transcription
KW - Heme oxygenase-1
KW - Oxidized LDL
UR - http://www.scopus.com/inward/record.url?scp=0042734437&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042734437&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.0000081656.76378.A7
DO - 10.1161/01.ATV.0000081656.76378.A7
M3 - Article
C2 - 12805077
AN - SCOPUS:0042734437
SN - 1079-5642
VL - 23
SP - 1416
EP - 1422
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 8
ER -